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Abstract

High level ab initio methods are indispensable tools for theoretical studies of molecu-

lar systems. By using quantum-mechanical principles, these methods enable solution

of complex chemical problems by using the power of computers. Knowing only the

positions and types of the atoms, one can calculate virtually all the properties of the

molecules such as charge distributions, dipole moments, reaction and excitation ener-

gies. Among ab initio techniques coupled cluster (CC) and equation-of-motion EOM

family of methods plays a special role. These methods enable accurate and systematic

treatment of electron correlation for both the ground and excited states. Accurate recov-

ery of electron correlation is essential for achieving chemical accuracy in calculations

(1 kCal/mol).

In Chapter 2 we present high level ab initio calculations of the electronic struc-

ture of the two isomers of the photoactive yellow protein (PYP) model chromophores.

We found that the phenolate and carboxylate isomers of the model chromophore (para-

coumaric acid, pCA) have distinctly different pattern of ionization and excitation ener-

gies, which contradicts published experimental results. Their excitation energies differ

by more than 1 eV and the first excited states in both isomers are autoionizing reso-

nances. The phenolate form of pCA exhibits shape resonance, whereas for carboxylate
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we predicted Feshbach-type resonance. Next, in Chapter 3, we investigate how micro-

hydration affects the electronic structure of the PYP and GFP model chromophores. We

found that microhydration leads to a larger blue shift in ionization than in excitation

energy, thus converting resonances into bound states.

Following our findings of resonance states in gas-phase chromophores we began the

development of new methods for proper description of resonance positions and life-

times. In Chapter 4 we extend EOM methods to atomic resonances by applying com-

plex scaled formalism in which all coordinates are rotated by a complex angle θ. By

computing θ-trajectories and finding an optimal angle, θopt , we are able to find posi-

tions and lifetimes of the resonances in He, H−, and Be. For the description of molec-

ular resonances, we use another approach in which we introduce complex absorbing

potential (CAP) into the original Hamiltonian. CAP is devised to absorb the divergent

tail of the resonance wave function. By using the CAP-augmented Hamiltonian with

EOM methods we study electronically attached shape resonances in various medium-

size molecules. We find that an artificial perturbation induced by the CAP can be dimin-

ished by introducing a first-order correction to the energy. We also observe that the

corrected energies are much less sensitive to the onset of the CAP (e.g., box size) and

that accurate results can be obtained using standard basis sets augmented by diffuse

functions.

In Chapter 6 improvement of the memory requirements in CC and EOM methods is

presented. By performing Cholesky decomposition of the two-electron integrals tensor

we significantly reduce its storage requirements from O(N4) to O(N3), which extends

the applicability of the method to larger systems that may not be accessible by canon-

ical EOM-CCSD. The errors introduced by the decomposition are small and can be

controlled by a single threshold specified by the user.
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Finally, in Chapter 7 we present a new version of Davidson’s algorithm for solving

the eigenvalue problems in quantum chemical calculations. These new algorithms facil-

itate finding the roots either around the user-specified energy shift or by user-defined

guess orbitals. These modifications will enable obtaining highly lying states that are not

accessible using standard methods that find only the lowest eigenstates. Such enhance-

ments will be useful for many applications, for example, in studies of core ionization

processes where the ionization potential can be as high as hundreds of electron-volts. We

also present an implementation of a new method for non-Hermitian eigenvalue problems

within EOM family of methods, generalized preconditioned locally residual method

(GPLMR), which also has the capabilities of finding interior eigenvalues around a spec-

ified shift. We present benchmarks for aforecited methods comparing their robustness

and computational cost.
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Chapter 1: Introduction and overview

1.1 Excited states and resonances in biochromophores

Discovery and development of fluorescent proteins revolutionized bioimaging tech-

niques used in medicine, molecular and cell biology1–3. Green fluorescent protein (GFP)

naturally found in jellyfish Aequorea victoria and its derivatives are widely used as bio-

logical markers in living systems, because they can be genetically encoded and because

their introduction does not perturb the functions of the host organism1–6. The unique

properties of GFP allowed researches to observe evolution and processes inside the live

cells in real time. The importance of the GFP has been recognized by Nobel Prize in

Chemistry in 2008 awarded to Osamu Shimomura, Martin Chalfie, and Roger Y. Tsien

”for the discovery and development of the green fluorescent protein, GFP”.

The photoactive center of any fluorescent protein is a light absorbing molecule inside

the protein called chromophore. The chromophore is responsible for all photochem-

istry and photophysics of the fluorescent proteins; thus, it is important to understand

its function in order to design new mutants with desirable properties. Even though the

protein-bound chromophore is affected by interactions with the protein environment, it

is important to study its intrinsic properties in a gas phase, such as excitation and ioniza-

tion energies. These studies allow one to quantify the effect of the protein environment

(such as hydrogen bondings) on the spectral properties of the isolated chromophores.
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In Chapter 2 we study the gas-phase electronic structure of the two isomers (carboxy-

late and phenolate) of the model photoactive yellow protein (PYP) chromophore7–9.

The PYP is naturally found in halophilic bacterium Halorhodospira halophila7, 8 and

is responsible for negative phototaxis of its host in response to blue light (movement

of the bacterium away from the source of the light)10. The PYP chromophore is an

anionic form of trans p-coumaric acid (pCA−) that is covalently linked to the protein

via a thioester bond11. From the point of view of theory, the PYP chromophore is inter-

esting since the first excited state exhibits a resonance character metastable with respect

to autoionization.

There were several theoretical12–16 and experimental9, 16–18 studies of the proper-

ties of the PYP chromophore. The previously reported excitation energies in gas phase

have large discrepancies among different quantum chemistry methods16, 19 as well as

with the experimental absorption16 maximum. Identical absorption spectra (measured

using action spectroscopy) were reported for the carboxylate and phenolate isomers16.

In Chapter 2, we compute vertical ionization and excitation energies of both forms in

gas phase using high level ab initio methods. Contrary to the experiment, we find that

the two isomers have distinctly different ionization and excitation energies, with a dif-

ference in excitation energies more than 1 eV. Our calculations confirm the resonance

character of the first excited states in both isomers: the phenolate form exhibits shape

resonance, whereas in carboxylate Feshbach resonance is exposed. We also analyze pos-

sible dissociation pathways of the two chormophore forms and find that the energetically

allowed fragments are CH3, CH2O for phenolate, and CH3, CH2O, CO2 for carboxy-

late. Based on our calculations we conclude that the identical experimental absorption

spectrum16 for the two isomers is caused by the contamination of the carboxylate sam-

ple by the phenolate isomer. This conclusion is supported by our findings that there are
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no transitions in the carboxylate form near the reported absorption maximum (2.88 eV),

the phenolate form is slightly lower in energy in gas phase and its oscillator strength is

significantly larger, and there is no additional CO2 neutral fragments characteristic for

caboxylate reported in the experiment.

In Chapter 3 we study the effect of microhydration on the electronic structure of PYP

and GFP model chromophores. Water molecules introduce hydrogen bonding similar

to that present in a native protein environment20, 21. The theoretical12, 14, 22 and exper-

imental23–29 studies show that hydrogen bonding, besides electrostatics and covalent

interactions inside the protein, can lead to significant spectral shifts. Thus, it is impor-

tant to understand how these interactions affect ionization and excitation energies of the

gas-phase chromophores. We performed high-level ab initio calculations of the mono

and dihydrated clusters of the model PYP and GFP chromophores. We observe that

H-bonding has a higher stabilization effect on the ionization (0.4-0.8 eV) than on exci-

tation (0.1-0.2 eV) energies, transforming the resonances of the bare chromophore into

bound states. The previous theoretical22, 30, 31 and experimental16, 17, 32 studies of the

PYP and GFP chromophores show that the protein has very small overall effect on the

absorption maximum. Thus, it suggests that hydrogen bonding and other interactions

(covalent, electrostatic) have mutually cancelling effects, which leads to small changes

in the photochemical properties of the protein-bound chromophores.

1.2 Autoionizing resonance states in atomic and molec-

ular systems

Resonance states appear in different forms in various areas of science. Resonances

are defined as nonstationary states with a finite lifetime long enough to be observed and
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characterized33, 34. The energy of the resonance is sufficient to break the system into two

or more subsystems. The first description of the resonance states in quantum mechanics

was given by Gamow35 in the context of radioactive α-decay. Since then the resonances

have been observed and characterized in such fields as particle36, atomic33, 37, molecu-

lar33, 38, 39, and mesoscopic40, 41 physics, as well as chemical dynamics.

The breakdown of the system in the resonance state can take different forms such as

radioactive nuclear decay, molecular autodissociation, autoionization, and inelastic scat-

tering of electrons33. We are particularly interested in autoionizing resonances, where

the system decays by the ejection of a free electron. The examples include excited states

of the closed-shell anions (e.g., PYP and GFP chromophores, Chapter 2), electronically

attached states of neutral molecules leading to metastable anions (for example 2Πg res-

onance in N−2 ), as weel as highly excited states of neutral species. These states are

common in plasma (electric arcs, supersonic combustion, lighting), interstellar chem-

istry42, 43, and radiolysis. The resonance states can be characterized as shape or Fes-

hbach types depending on the type of the decay. The shape-type resonance originate

from the shape of the potential where the electron can escape the potential barrier by

tunneling effect. A Feshbach-type resonance appears as a result of the coupling of a

bound state to a continuum. Because of this coupling the state decays in time through

an available open channel.

Since the resonance phenomena by its nature is a nonstationary process, a logi-

cal approach would be time-dependent formalism that entails solving time-dependent

Schrodinger equation by wavepacket propagation34. As a simple example, let us con-

sider a wavepacket inside a one dimensional potential34, 44:

V (x) = (1− V0

cosh2βx
)e−αx2

(1.1)
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with parameters α = 0.05, β = 1, V0 = 1. The snapshots of the probability density at

different times are given in Figure 1.134. At time 0, the wavepacket is localized and

strongly resembles the bound state. As the time goes, the probability density inside the

barrier falls due to tunneling of the electron.

Figure 1.1: Evolution of probability density (solid line) and phase (dashed line) of
the wave packet

If we consider the particle inside the interaction region, the wave function can be

written as:

ψR(x, t) = e−i(ER− i
2 Γ)t

ψ0(x) (1.2)

This means that the wavepacket inside the interaction region can be considered as a

bound stationary state with a complex energy:

E = ER−
i
2

Γ (1.3)
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Here ER is the position of the resonance and Γ = 1
τ

is inversely proportional to the

lifetime. Outside the potential, the wave function has an oscillatory behavior resembling

the escaping free particle.

As we saw, the behavior of the resonance state can be described in time-dependent

framework by wavepacket propagation. However, in practice such calculations are dif-

ficult due to steep scaling of full-dimensional calculations. Furthermore, there are many

robust quantum chemical time-independent methods developed for the description of

bound states and, as we saw previously, in the interaction region the resonance state

resembles the bound state, but with a complex energy. It would be beneficial if one could

adapt a powerful tool-set of quantum chemistry for calculations of resonance states, so

the same information as from wave packet propagation could be obtained from time-

independent calculations.

Now let us consider the particle inside the potential (equation 1.1) by solving time-

independent Schrodinger equation:

[−1
2

∂2

∂x2 +V (x)]φ(x) = Eφ(x) (1.4)

with outgoing flux conditions (Siegert boundary conditions)45 φ(|x| ≥ L) = eik|x|. These

boundary conditions make the Hamiltonian non-Hermitian resulting in complex eigen-

values (energies) which is the case for resonance states. Wavevector for resonance state

is k = kr− iki, where kr and ki are positive numbers; energy and wave function for res-

onance state are defined by equation 1.3 and 1.2, respectively. The time dependent part

of the wave function decays exponentially with time (e−Γt factor), however the spatial

part of the wave function has a divergent behavior at infinity:

φ(x→±∞) = A±e±krxeki|x| (1.5)
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Thus, the spatial part of the wave function is not square-integrable (does not belong

to L2) and is not normalizable. Since most of the standard methods employ square-

integrable wave functions, resonance states cannot be straightforwardly described by

them.

One technique for transforming Siegert solutions into square-integrable wave func-

tions is through complex scaling method introduced by Balslev, Combes46, and

Simon47. The idea of the method is to rotate all the coordinates into the complex plane

by performing the dilation transformation, r→ reiθ. In the limit of complete basis set the

complex-scaled Hamiltonian has the same bound-state spectrum, the continuum states

rotate by angle 2θ down to the complex energy plane, and resonance states become

square-integrable wave functions with complex energies33. Complex scaling transfor-

mation allows one to describe a resonance state as a single discrete bound-like state with

a complex energy, for which standard time-independent methods of quantum chemistry

can be applied.

Another method for transforming the diverging Siegert wave function is a com-

plex absorbing potential (CAP) method which was first introduced in the context of

the wavepacket propagation in 198648. The goal of the CAP in time-dependent picture

is to absorb the escaping wave packet avoiding the artificial reflection at the edge of

the numeric grid. The spectral properties of the time-independent Hamiltonians per-

turbed by artificial complex potential −iηW (where W can be a simple parabolic func-

tion (r−r0)2) were first studied by Meyer49. It was shown that in the complete basis set,

the exact position of the resonance and the respective square-integrable wave function

can be obtained in the limit of η→ 0. In practice, one works with incomplete basis sets,

thus some optimal value of the CAP strength (ηopt) has to be reached to stabilize the

resonance49, 50. The CAP method can be viewed as an alternative to the complex scaling
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approach and can be also combined with standard time-independent quantum chemical

methods for bound states. We also note that reflection-free CAPs50 are equivalent to

exterior complex scaling approach51, 52 where the coordinates are complex-scaled only

at the outer region of the molecule.

Here we present an extension of EOM-CCSD methods to study the resonance states

in time-independent formalism. EOM methods have been proven to provide accurate

description of excitation (EE), attachment (EA), and ionization (IP) energies for bound

target states53–57. EOM-CC methods are size-extensive and provide balanced and accu-

rate recovery of both ground and excited state correlation energies, which is essential for

achieving high accuracy. Reliability and robustness of the EOM methods make it a natu-

ral choice for extending the formalism towards the description of resonance states. First,

in Chapter 4 we present an implementation of complex-scaled EOM-EE-CCSD method

and benchmark calculations of Feshbach resonances in small atomic systems (He, H−,

Be). We observe extreme sensitivity of the results to the choice of the one electron basis

set and conclude that the basis should be flexible enough to describe the wave function

for all rotation angles θ, as well as accurately recover correlation energy. We con-

clude that even though complex scaling method has rigorous theoretical foundations,

its practical applications to chemically interesting molecular systems are problematic

due to basis set issues and breakdown of the Born-Oppenheimer approximation58 under

complex scaling transformation. For calculation of molecular resonances we present an

implementation of complex absorbing potential within EOM-EA and EOM-EE meth-

ods (CAP-EOM-EA and CAP-EOM-EE) in Chapter 5. We realize that the distortion

of energies due to inclusion of the artificial CAP to the Hamiltonian can be mitigated

by a first-order correction to the energy. We calculate shape resonances for a variety

of medium-size anions (N−2 ,C2H−4 ,CO− etc.) using CAP-EOM-EA and observe that
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first-order corrected energies are much less sensitive to the CAP onset (e.g. box size)

and give reliable position and lifetimes.

1.3 Improvement of efficiency and robustness of excited

state methods

Wave function based ab initio methods provide the most reliable way for recovery of

electron correlation, which is essential for the accurate determination of molecular prop-

erties. Among ab initio methods, coupled-cluster (CC) and equation-of-motion (EOM)

methods represent the most successful approach to accurate many-electron wave func-

tions of ground and excited states53. These methods have become the most successful

and widely used tools of quantum chemistry.

However, high computational and memory cost of CC and EOM methods restricts

their applications to the molecules of moderate sizes. For example, coupled-cluster

with single and double substitutions (CCSD) scales as O(N4) in memory and O(N6) in

computational cost (where N is the number of the basis functions) meaning that if one

doubles the system size, the amount of memory and computations increases roughly 16

times and 64 times, respectively. Reducing the scaling of these methods and improv-

ing their efficiency would expand their applicability to larger systems, such as those in

biology, solid-state, and polymer chemistry.

The problem of the high memory and computational cost arises from the fact that

the two-electron part of the Hamiltonian and wave function parameters are represented

as high-order tensors for which the cost grows exponentially with the number of dimen-

sions. For example, consider coupled cluster methods in which the wave function is

written in the following form53, 59–62:
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Ψ = exp(T1 +T2 + ...+TN)Φ0 (1.6)

where Φ0 is a single Slater determinant (usually a Hartree-Fock determinant) and Tk

represents k-fold excitations. In second quantization form they can be written as:

T1 = ∑
ia

ta
i a+i (1.7)

T2 =
1
4 ∑

i jab
tab
i j a+b+i j (1.8)

... (1.9)

where a+ and i represent creation and annihilation operators, and ta
i , tab

i j , ... are coupled-

cluster amplitudes. In CCSD only single and double excitation operators are included.

The tensor of double excitation amplitudes (tab
i j ) is a fourth-order tensor, thus the amount

of memory required for its storage scales as O(N4). If we also include triple excitations

(tabc
i jk ) then the resulting tensor is the tensor of order 6 and the memory will scale as

O(N6). As we can see, the inclusion of higher order excitations increases the memory

requirements dramatically.

Solving for the CC wave function entails finding the CC amplitudes (ta
i , tab

i j , ...), this

is done by projecting on the reference and all excited determinants giving rise to the

following set of equations60:

〈Φ0|e−T (H−ECCSD)eT |Φ0〉= 0 (1.10)

〈Φa
i |e−T (H−ECCSD)eT |Φ0〉= 0 (1.11)

〈Φab
i j |e−T (H−ECCSD)eT |Φ0〉= 0 (1.12)

... (1.13)

10



When this set of equations is appropriately factorized, all terms involve the contrac-

tion of the cluster operator T with either two- or four-index quantities from the Hamil-

tonian63. The contractions of the amplitudes with the two-electron part (which is the

tensor of order 4) is the most expensive step in the calculations of CC wave functions; it

costs O(N6) for CCSD and O(N8) for CCSDT.

In EOM-EE the wave function of an excited state is written as:

ΨEOM = R̂exp(T̂ )|Φ0 > (1.14)

where R̂ is a general excitation operator.

ˆREE = ∑
ia

ra
i a†i+

1
4 ∑

i jab
rab

i j a†b† ji+ ... (1.15)

Similar to CCSD, the memory scaling for storing R amplitudes is increasing with

the inclusion of higher n-tuple excitations. The problem of finding ra
i ,r

ab
i j , ... amplitudes

is formulated as a non-Hermitian eigenvalue problem:

(H̄−ECCI)R = RΩ (1.16)

H̄ = e−T HeT (1.17)

which is traditionally solved by using Davidson’s method64, where the construction of

the full Hamitonian matrix is avoided. The most expensive step in solving EOM-EE-

CCSD problem using Davidson’s procedure is the calculation of the projection of the

Hamiltonian on the space of double excitations:

σ
ab
i j = ((H̄DD−ECCI)R2)ab

i j (1.18)
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Similar to CCSD, it involves contractions of R amplitudes with T amplitudes and

electron-repulsion integrals (ERI) which leads to computational scaling of O(N6).

As we saw in the case of CC and EOM, high memory and computational cost arises

due to the storage and contraction of high-order tensors such ERI tensor and CC/EOM

amplitudes. Let us now turn our attention to the electronic Hamiltonian of a system with

Ne electrons and M nuclei:

Helec =−
Ne

∑
i=1

1
2

∇
2
i −

Ne

∑
i=1

M

∑
A=1

ZA

riA
+

Ne

∑
i=1

Ne

∑
j>i

1
ri j

(1.19)

The first term of the Hamiltonian is electronic kinetic energy, second term is nucleus-

electron attraction (ZA is the charge of the nuclei), and the last term describes electron-

electron Coulomb repulsion (two-electron part of the Hamiltonian). In the Gaussian

basis set two-electron part of the Hamiltonian in atomic orbital basis is represented as a

4th-order ERI tensor:

(µν|λσ) =
Z

χµ(~r1)χν(~r1)
1

|~r1−~r2|
χλ(~r2)χσ(~r2)d~r1d~r2

the memory requirements for this tensor scale as O(N4) with the number of basis func-

tions χλ(~r). The most computationally expensive operations in CC and EOM methods

involve the contractions of various tensors (e.g. R and T amplitudes) with the ERI tensor,

which results in the computational cost of O(N6).

In Chapter 6 we present an implementation of Cholesky decomposition of the ERI

tensor within CC and EOM methods. Most of the “product densities” χµ(~r)χν(~r) in

ERI tensor are linearly dependent and this fact can be exploited performing Cholesky

decomposition:
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(µν|λσ)≈
M

∑
P=1

BP
µνBP

λσ
, (1.20)

The Cholesky decomposition allows one to remove redundant linear-dependent

product densities from the original tensor achieving more efficient representation. Thus,

the original ERI tensor of order 4 can be presented as a tensor of order 3 with linearly

growing rank M. The rank depends on the accuracy of decomposition which can be con-

trolled by the user and is linear with a small prefactor depending on the target accuracy.

Thus, by performing Cholesky decomposition of ERI tensor we reduce the memory

requirements for storing ERI and its intermediates from O(N4) to O(N3). Cholesky

decomposition is a general approach which does not require any specific information

about system or basis set, but relies on numerical procedure with controllable decompo-

sition precision.

All equations for CCSD and EOM-CCSD families of methods have been rewritten

to utilize Cholesky decomposed integrals. The savings in memory are evident for large

systems (around 1000 basis functions) where the memory and disk requirements are

reduced by more than an order of magnitude. It makes CC and EOM methods applicable

to the chemical systems of much larger sizes, that are beyond the reach of the canon-

ical implementations. The ERI presented in Cholesky-decomposed form do not allow

one to rewrite the equations to reduce the computational scaling due to the presence of

the exchange. However, because of a significantly reduced memory and disk savings,

we observed much better parallel performance due to smaller I/O overheads and more

efficient CPU utilization leading to significantly reduced calculation time. The bench-

marks for various systems show that the errors introduced by Cholesky decomposition

are small and controllable for both ground and excited states.
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In Chapter 7 we address another issue of EOM methods - problem of effective search

of few desired excited states. The problem of finding EOM wave function is a non-

Hermitian eigenvalue problem (equation 1.16) with matrix of huge sizes that cannot be

explicitly constructed and diagonalized. The most popular method for solution of this

kind of problems in quantum chemistry is Davidson’s method - it allows one to find

a few (1-10) smallest eigenvalues in an iterative manner. However, many applications

(such as core ionization processes65–67) require calculation of the roots that are high in

energy (often, they are dominated by transitions from a paticular low lying orbital). Con-

ventional Davidson’s method cannot handle such tasks, since the calculation of all lower

eigenvalues required to find a desired one. In Chapter 7 we present two new versions of

Davidson’s algorithm within EOM family of methods. The first version allows one to

solve for the states around the energy shift chosen by the user (e.g. 2 roots around 300

eV), which should be useful if approximate experimental or theoretical energy value of

the transition is available. Second modification of the Davidson’s algorithm enables to

solve for the eigenpair specified by the user-defined guess (e.g. ionization from HOMO-

3 orbital) that will be helpful if the state dominated by particular transition (e.g. ioniza-

tion from 1s Carbon orbital) is required. We also present an implementation of a new

numerical method for non-Hermitian eigenvalue problems - Generalized Preconditioned

Locally Minimal Residual (GPLMR) method68 within EOM. This method also allows

finding the roots around chosen energy shift and its convergence speed and memory

requirements can be controlled by the user. We present benchmarks of these methods

comparing their convergence properties, computational and memory costs.
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[13] E. V. Gromov, I. Burghardt, H. Köppel, and L. S. Cederbaum. Impact of sulfur
vs oxygen on the low-lying excited state of trans-p-coumaric acid and trans-p-
coumaric thio acid. J. Phys. Chem. A, 109:4623–4631, 2005.
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Chapter 2: Electronic structure of the

two isomers of the anionic form of

p-coumaric acid chromophore

2.1 Introduction

Photoactive yellow protein (PYP) is a small bacterial photoreceptor found in Halorho-

dospira halophila1, 2, which is responsible for the negative phototaxis of its host bacteria

in response to blue light3. The PYP chromophore is a prosthetic group of para-coumaric

acid (pCA) linked to the protein by the thio-ester covalent bond4, 5. Inside the protein,

the chromophore exists in the anionic (deprotonated) form4, 5. Absorption of blue light

(λmax=446 nm or 2.78 eV3) triggers the chromophore’s trans-cis photoisomerization,

which, in turn, initiates the cascade of processes leading to signal transduction6, 7.

To understand the complex photochemistry of photoactive proteins, it is desirable

to distinguish between the intrinsic properties of the chromophore and effects due to

chromophore-protein interactions, which may affect both the optical properties and the

response to light absorption, e.g. dynamics on excited-state potential energy surfaces.

Therefore, the properties of excited states of the unperturbed isolated chromophores are

of particular interest. Several synthetic analogues of the PYP chromophore have been
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studied experimentally in gas phase8–11. Dynamics of the gas-phase photoisomerization

of the 4-(3-oxobut-1-enyl)-phenolate anion (P−) was studied using femtosecond mass-

selection/electron detachment techniques11. This study demonstrated that the protein

environment plays a twofold role, i.e., (i) impeding electron detachment from the chro-

mophore and (ii) directing the photoreaction towards the cis photoproduct11. Based on

these experiments, the vertical detachment energy for the P− chromophore was esti-

mated to be 2.9 eV11.

The gas-phase absorption spectra of different model PYP chromophores including

pCA−, methylated pCA− analogues and trans-thiophenyl-p-coumarate (pCT−) have

been measured using action spectroscopy coupled with ion-storage ring and electrospray

techniques8–10. An interesting feature of these anionic systems is that the photoabsorp-

tion initiates two competing processes, i.e., photodetachment and fragmentation. Conse-

quently, the photoabsorption bands obtained by action spectroscopy include signal from

detachment, from excitation followed by fragmentation, and from autoionization.

Determination of the relative cross sections of these processes is a challenging task

and is still an open problem. Therefore, the interpretation of the action spectroscopy

photoabsorption spectra requires caution. An attempt to distinguish between the detach-

ment and excitation channels for the anionic chromophore of the green fluorescent pro-

tein (GFP) has been reported by Frobes and Jockusch12. Although a fulfilling com-

pletely different physiological function, the GFP chromophore features remarkably sim-

ilar electronic structure patterns, e.g., the lowest excited state of its anionic form is also

an autoionizing resonance state13, 14.

The pCA anion serves as a minimal model of the PYP chromophore. Two pCA− iso-

mers that have been studied experimentally10 are the phenolate and carboxylate forms
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Figure 2.1: The resonance structures of the model PYP chromophore, pCA−, in
the phenolate (left) and carboxylate (right) forms.

shown in Fig. 2.1. The carboxylate is believed to be the more stable isomer in polar sol-

vents10, whereas in the gas phase, the phenolate isomer is 13 kcal/mol lower in energy10.

Their relative stability can be explained by different charge distribution patterns of the

two isomers discussed in Section 2.3.1 — the more localized charge on carboxylate can

be solvated more efficiently, whereas in the gas phase the isomer with more delocalized

excess charge becomes more stable.

In solution, isomerization between these two tautomers may occur. Since it is not

clear whether gas-phase equilibrium conditions are reached in electrospray, methyl-

substituted ethers of the pCA− isomers have been used in the experiment10. Although

the absorption spectra of the two isomers in solution are considerably different (4.40 eV

and 3.49 eV for carboxylate and phenolate, respectively10), their gas-phase absorption

maxima were reported to be identical (2.88 eV).

The absorption spectra of pCA− has attracted considerable attention from theory for

the following reasons: (i) it was found that the excited state of the phenolate form of

the anion is a resonance state lying above the detachment continuum15, 16; and (ii) there

are large discrepancies in excitation energies computed by different quantum chemistry

methods10, 17 as well as between theoretical and experimental absorption maxima10.
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Thus, pCA− features a complex electronic structure characteristic of closed-shell anions

and presents an interesting benchmark system for ab initio methods.

There are numerous theoretical studies on the absorption of the isolated PYP chro-

mophores10, 15–18. Gromov at el. have studied absorption of the gas-phase PYP chro-

mophore in neutral15 and anionic states18. However, when considering the anionic chro-

mophore, the authors mainly focused on the phenolate, the biologically relevant form.

In line with early evidence of the resonance character of the first excited state of the PYP

chromophore based on the phenolate anion model16, Gromov et al. have demonstrated

that the lowest excitation energy of a realistic chromophore (3.17-3.18 eV, EOM-CCSD)

is indeed above the detachment continuum (2.51-2.90 eV, OVGF)18, 19. The conclusion

was further supported by other theoretical results for pCA− 10. Ma et al.17 used many-

body Green’s function theory (MBGFT) to study excited states of the the carboxylate

and phenolate forms of pCA−. They reported excitation energies of 2.95 and 4.37 eV

for phenolate and carboxylate, respectively17. As a possible explanation of the exper-

imental results, the authors suggested that the only form present in the gas phase is

phenolate17. Since the methylated species were used in the experiment10, this conclu-

sion seems questionable. Bochenkova and co-workers have reported excitation ener-

gies for the carboxylate and phenolate forms of pCA− that are within 0.1 eV of the

experimental peaks obtained with the augmented multiconfigurational quasidegenerate

perturbation theory technique (aug-MCQDPT2)10. At the same time, excitation ener-

gies computed using the approximate coupled-cluster doubles scheme (CC2, 4.79 and

3.10 eV for carboxylate and phenolate pCA−, respectively)10 are in agreement with the

MBGFT results. Thus, either the absorption spectra of the deprotonated pCA present a

very challenging problem for modern quantum chemical methods or the experimental

results require re-interpretation.
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This study presents electronic structure calculations of the two pCA− isomers. We

characterized the lowest excited and ionized states of the chromophore using high-level

ab initio methods including EOM-CCSD20–24, state-specific and multistate multiref-

erence perturbation theory (SS-CASPT2 and MS-CASPT2)25, and a coupled-cluster

method with an approximate account of triple excitations, CC326. We rationalize the

observed difference in the absorption spectra of the two molecules on the basis of the

Hückel model. We also analyze the photodissociation pathways and suggest the forma-

tion of the CO2 photofragment as an experimental probe for the carboxylate isomer of

pCA−.

2.2 Computational details

The equilibrium geometries of both isomers were optimized using MP2 with the aug-cc-

pVDZ27 basis set. The resolution-of-the-identity (RI) technique28–31 was employed. Cs

symmetry was imposed during the geometry optimization. The following convergence

thresholds were used in the optimization procedure: 1×10−6 hartree for the energy,

3×10−4 hartree/Å for the energy gradient, and 1.2×10−3 Å for displacements.

Geometry optimizations of neutral radicals were performed with the long-range cor-

rected ωB97X functional32 using the aug-cc-pVDZ basis and with the IP-CISD (con-

figuration interaction with single and double substitutions for ionized states)33 method

with the 6-31+G(d,p) basis set. IP-CISD is an approximation to EOM-IP-CCSD (EOM-

CCSD for ionized states)20, 34–38, which scales as N5 and employs an uncorrelated

Hartree-Fock determinant as a reference instead of the CCSD wave function. For com-

parison purposes and zero-point energy (ZPE) calculations, the structures of the closed-

shell anions have been also reoptimized with ωB97X/6-31+G(d,p). The absence of

imaginary frequencies obtained by ωB97X/6-31+G(d,p) verify that the stationary points
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are indeed true minima, except the planar Cs structure for carboxylate, which was found

to be a transition state with a single imaginary frequency corresponding to the rota-

tion along the single bond at the bridge. This is probably caused by steric repulsion

between the hydrogen atoms at the bridge Cβ atom and the phenol ring. The structure

reoptimized without the Cs symmetry constraint is non-planar with a C-Cα-Cβ-Cγ tor-

sional angle of 14.5◦. The energy difference between the two structures is minor [0.04

kcal/mol, ωB97X/6-31+G(d,p)]. We do not anticipate significant effects of slight non-

planarity on excitation energies and employ the planar geometry in all calculations. A

higher torsional rigidity of the phenolate isomer can be explained by the two resonance

structures (Fig. 2.1) resulting in the allylic character of the bridge moiety, and, conse-

quently, partial double-bond character of Cα-Cβ.

Dissociation energies (De) for different fragmentation channels were computed

with ωB97X/6-311++G(2df,2pd) as the difference between ground-state energies of

the initial molecule and the dissociation products. Zero-point energy (ZPE) correc-

tions were calculated with ωB97X/6-31+G(d,p) at the geometries reoptimized at the

same level of theory. To analyze conformational flexibility of the chromophore, we

also performed ab initio molecular dynamics (AIMD) simulations using the B3LYP

functional and the 6-31+G(d,p) basis set. The trajectories were propagated for 5

ps with the time-step of 0.5 fs. The grid used for all DFT calculations contained 75

points in the Lebedev39 radial grid and 302 points in the Euler-Maclaurin40 angular grid.

Vertical excitation energies were computed using EOM-EE-CCSD (EOM-CCSD for

excitation energies)20–22, 24, CC326, and CASPT225. Vertical detachment energies were

computed by using Koopmans’ theorem (i.e., negatives of orbital energies) and by EOM-

IP-CCSD34, 35, 37 with the 6-311+G(df,pd) basis.
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The EOM-CCSD error bars are 0.1–0.3 eV for electronic states dominated by single

excitations. Including triples reduces the errors to 0.01–0.02 eV41. In a recent bench-

mark study, Schreiber et al.42 reported EOM-CCSD mean absolute and maximum errors

of 0.12 and 0.23 eV, respectively. A recent study of uracil43 demonstrated that even

for well-behaved molecules inclusion of triple excitations and extending the basis set

beyond augmented double-zeta can affect vertical excitations by as much as 0.3 eV. The

CC3 method26, which is an iterative CC method with an approximate inclusion of triple

excitations, has been shown to reduce the EOM-CCSD error bars down to 0.016 eV

(maximum error) for singly excited state42.

The multireference calculations were performed with the complete active space

SCF (CASSCF) method44 to account for near-degeneracies of different electronic con-

figurations followed by multireference second-order perturbation theory (CASPT2)45

to include dynamical correlation. These calculations were performed with the 6-

31G(d,p)46, ANO-RCC-VDZP and ANO-RCC-VTZP47, 48 basis sets. The ANO-RCC

bases were used together with the Douglas-Kroll Hamiltonian49 relativistic correction.

For the first two rows of the periodic table, the ANO-RCC basis sets perform similarly

to the ANO-L non-relativistic bases.

The active space was designed to include all p-orbitals perpendicular to the molecu-

lar plane for accurate description of the lowest π→ π∗ excitations. The resulting active

space included 14 electrons in 12 orbitals. The state-averaged CASSCF approach was

used with equal weight on the six lowest states. In subsequent CASPT2 and MS-

CASPT225 calculations, the standard IPEA shift of 0.2550 was employed and the 1s

core orbitals of the second row elements were frozen in the calculations of the dynam-

ical correlation correction. Oscillator strengths were computed using the complete

active space state interaction (CASSI) algorithm51. The calculations employed the
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recently developed Cholesky decomposition (CD) methods to handle the two-electron

integrals52, 53. The calculations used the so-called atomic compact CD (acCD) auxiliary

basis set54, 55 (generated with a CD threshold of 10−4) along with the CD-CASSCF56

and CD-CASPT257 implementations. In the CD-CASSCF implementation the Local

Exchange approximation58 was employed. The errors in excitation energies introduced

by these approximations are less than 0.001 eV, as demonstrated in the recent benchmark

study59.

The Cartesian geometries, relevant energies, and harmonic frequencies are provided

in Supporting Materials for Ref. 60. The wave function analysis was performed using

Natural Bond Orbitals (NBO) procedure61, 62. The EOM-CC and DFT calculations were

performed with Q-Chem63. The CC3 and CASPT2 calculations were performed using

PSI III64 and MOLCAS65, respectively.

2.3 Results and discussion

2.3.1 Structures and charge distributions of pCA−

We considered several rotamers of the pCA− anion derived by rotation along the phe-

nolic C-O (carboxylate), Cγ-C(OOH) and C-O(H) (phenolate) bonds. All excitation and

ionization energies for the phenolate are reported for the lowest energy structure with

the Cγ-C(OOH) and C-O(H) bonds in anti and syn configurations, respectively. For

the carboxylate, all results are obtained for the lowest energy syn-OH rotamer, except

CASPT2 and CC3 excitation energies. CASPT2 and CC3 calculations were performed

for the anti-OH rotamer, which is slightly higher in energy (by 0.06 and 0.55 kcal/mol at

the RI-MP2/aug-cc-pVDZ and CCSD/6-31+G(d,p) levels, respectively; see Supporting

Materials for Ref. 60).
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The difference in the bond length alternation (BLA) patterns in the carboxylate and

phenolate structures can be qualitatively explained by the analysis of leading resonance

structures10. The two dominant resonance forms of the phenolate isomer are: (i) enol

with the negative charge hosted by the –COOH fragment; and (ii) phenol with the charge

localized on the phenolate oxygen. BLA at the bridging C-C bonds (Cα-Cβ-Cγ) for

the phenol-like resonance structure corresponds to the single Cα-Cβ and double Cβ-Cγ

bonds (Fig. 2.1), whereas the enol-like resonance structure has an opposite pattern. The

two dominant resonance structures of carboxylate only affect the carboxylate moiety

and do not disturb BLA in the bridge region. Thus, Cα-Cβ is a single bond, and Cβ-Cγ

is a double bond.

1.392

1.403
1.406

1.415

1.418

1.402

1.409

1.472

1.358
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1.268
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1.271

1.455
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1.429

1.388

1.460

1.431

1.380

1.447

1.236

1.396

Q1 = -0.83 Q2 = -0.17 Q1 = -0.17 Q2 = -0.83

Figure 2.2: Relevant geometric parameters (RI-MP2/aug-cc-pVDZ) and NBO
charge distributions for the ground electronic state of the phenolate (left) and car-
boxylate (right) forms of pCA−.

The optimized geometries and the NBO charge distributions of both isomers are

shown in Fig. 2.2. To quantify the charge distribution, we divide the molecule into

two parts, as shown in Fig. 2.2. In the carboxylate, the excess charge is hosted by the

CO2 group, whereas in the phenolate the charge is located mainly on the phenol ring

and the bridge and is more delocalized. This explains preferential deprotonation of the

carboxylate in polar solutions, as solvation of the more compact carboxylate anion is

more efficient. Although the charge distribution in phenolate does not reveal significant

29



contribution of the enol resonance form, its signature can be found in the optimized geo-

metrical parameters. The resonance analysis above predicts that the difference between

the Cα-Cβ and Cβ-Cγ bond lengths should be larger in the carboxylate isomer, and this

is indeed the case — the difference in the bond lengths is almost twice larger in car-

boxylate (0.114 Å) than in phenolate (0.051 Å) revealing notable contribution of the

enol resonance structure. The latter effect is even more important for the anionic form

of the GFP chromophore14, 66, 67 where the two chromophore moieties (phenolic and

imidazolone rings) are more similar.

2.3.2 Ab initio calculations of the electronically excited and ionized

states of pCA−

As a closed-shell system, the pCA− anion is stable in the gas phase and has a rela-

tively large VDE. Detachment energies calculated by EOM-IP-CCSD are summarized

in Table 2.1. The computed VDE for the phenolate isomer agrees well with the experi-

mental value of 2.9 eV reported for a similar model PYP chromophore11. Interestingly,

Koopmans’ theorem fails to predict the correct ordering of the ionized states in the

carboxylate. According to Koopmans’ theorem, the lowest ionization corresponds to

electron removal from the HOMO (Fig. 2.3), which is a π-like orbital delocalized over

the phenol ring and the bridge, whereas the negative charge is mainly located on the

carboxylate group and one could expect ionization from the latter moiety. Electron cor-

relation changes the ordering of the ionized states and the lowest ionized state at the

EOM-IP-CCSD level indeed corresponds to electron detachment from the carboxylate

orbital (HOMO-3) formed by oxygen lone pairs (see Fig. 2.3). The differences between

Koopmans and EOM-IP-CCSD VDEs range from 0.3 - 2.2 eV. Thus, correlation is

required for both quantitative accuracy and for determining the correct state ordering.
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All ionized states have predominantly single-configurational Koopmans character (the

leading R1 amplitude is greater than 0.95).

Figure 2.3: Relevant MOs in the 6-31+G(d,p) basis. The π∗3 orbital for carboxylate
and π∗2, π∗3 orbitals for phenolate (not shown) are of diffuse character.

The basis set effects on computed VDEs were analyzed by using several bases in

the EOM-IP-CCSD calculations of the carboxylate isomer. VDEs for the first ionized

state computed with 6-311+G(d,p), 6-311(2+,+)G(d,p) and 6-311+G(df,pd) are 3.80,
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3.80 and 3.91 eV, respectively. Thus, the addition of diffuse functions has only minor

effect on VDEs, whereas the effect of polarization is more pronounced.
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Figure 2.4: Equilibrium structures of the ionized pCA− optimized by ωB97X/aug-
cc-pVDZ. Ionization-induced changes in the bond lengths, i.e. difference in the
bond lengths between the neutral and anionic state optimized geometries (com-
puted at the same level of theory), are given in parentheses.

The relaxation energies (VDE-AIE) are 0.4 eV and 0.2 eV for the first ionized state

of carboxylate and phenolate, respectively. The comparison of the anionic and neutral

states’ geometries is presented in Fig. 2.4. The observed trends can be explained by the

analysis of the corresponding MOs. The lowest ionized state of phenolate corresponds

to electron removal from the conjugated π-system. The HOMO is bonding with respect

to the three phenol carbon atoms, the Cα-Cβ bridge and Cγ–C(OOH) bonds (Fig. 2.3).

Thus, detachment from the HOMO leads to the increase in these bond lengths. In con-

trast, the HOMO has anti-bonding character with respect to phenolic O–C and C–O in

the carboxyl group, and ionization results in bond length contraction (Fig. 2.4).
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Table 2.1: Vertical detachment energies (VDE, eV) for the two pCA− isomers
estimated by Koopmans theorem (KT, eV) and computed with EOM-IP-CCSD/6-
311+G(df,pd)//RI-MP2/aug-cc-pVDZ.
EOM-IP-CCSD/6-311+G(df,pd) adiabatic detachment energies (ADE, eV) com-
puted using ωB97X/aug-cc-pVDZ optimized geometries of the neutrals for the first
ionized state and IP-CISD/6-31+G(d,p) for the subsequent ones are also given.

Carboxylate

Target state Orbital KT VDE ADE
12A’ n1 6.08 3.91 3.54
22A’ n2 6.01 4.07 –
12A” π1 5.54 4.18 3.99
22A” π2 4.72 4.75 4.57

Phenolate
Target state Orbital KT VDE ADE

12A” π3 3.26 2.92 2.72
1 2A’ nph 6.68 4.54 –
2 2A” π2 5.84 5.6 –
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Lowest ionized state of the carboxylate corresponds to detachment from the HOMO-

3, which is a σ-like orbital (Fig. 2.3). Electron detachment from the negatively charged

COO group in the carboxylate reduces electron repulsion between the phenolic and

carboxyl moieties thus reducing the Cγ–C(OO) bond length. Ionization also detunes the

resonance in the carboxyl group; the BLA patterns in the carboxyl group of the ionized

carboxylate and phenolate isomers are very similar (Fig. 2.4).

Despite relatively high detachment energy, both phenolate and carboxylate isomers

do not support bound electronically-excited singlet states, and the lowest valence

excitation is embedded in the detachment continuum (Tables 2.1 – 2.2). Such resonance

states are common in molecular anions13, 68 and play an important role in dissociative

electron attachment processes69, 70. A complete description of the resonance excited

states requires taking into account their interactions with the continuum. Several

techniques can be used to tackle this problem, such as stabilization71 and complex

Hamiltonian methods including complex absorption potential72, 73 and complex-scaling

methods74–77. In traditional electronic structure calculations, increasing the basis

set results in low-lying excited states corresponding to excitation to diffuse orbitals

approximating the continuum. These continuum-like states can mix with the metastable

valence excited state (see, for example, Ref. 13) presenting an obstacle for obtaining

converged (with respect to the one-electron basis set) results. By using bases with

moderate diffuse character we enforce the localization of the excited state preventing its

mixing with the diffuse continuum-like states, which can be thought of as approximate

diabatization.
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In both isomers, the lowest bright state is a π→ π∗ transition. According to the

EOM-EE-CCSD results, this state has mixed character in carboxylate, i.e., HOMO →

valence LUMO (R1=0.40) and HOMO → valence LUMO+1 (R1=0.39). Tables 2.3

and 2.2 compare performance of different methods for excitation energies of the pCA−

chromophores. The phenolate isomer is relatively well-behaved. The excited-state

wave function is dominated by a single one-electron excitation (π3π∗1). Both single-

(CC2, EOM-CCSD) and multi-reference approaches (MRMP2, MCQDPT2, CASPT2)

as well as MBGFT yield similar S0-S1 excitation energies (Table 2.3). The difference

between MS-CASPT2 and SS-CASPT2 excitation energies is 0.02 eV. EOM-EE-CCSD

provides a slightly higher excitation energy than MS-CASPT2 (0.2 eV). This trend

agrees with the benchmark studies by Schreiber et al.42. The difference is due to the

absence of triple excitations in EOM-EE-CCSD, as the inclusion of triples at the CC3

level results in the decrease of excitation energy of the same magnitude (0.2 eV). Good

agreement between MS-CASPT2/TZVP and CC3/TZVP for one-electron excitation

dominated transition was also pointed out in Ref. 42. The excitation energy is sensitive

to addition of diffuse basis functions to the basis set (0.16 eV). The extension of the

basis from double- to triple-zeta quality results in the decrease of the MS-CASPT2

excitation energies by 0.11 eV (Table 2.3). Our best estimate of the S0-S1 excitation

energy of phenolate is 3.0 eV.

Carboxylate presents a more complex case. Previous quantum chemistry calcu-

lations yielded excitation energies (of the bright state) varying in the range of 2.85-

4.79 eV. The discrepancies can be explained by the complex electronic structure of the

molecule manifesting itself in a complete breakdown of the Koopmans picture, e.g.,
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Hartree-Fock yields an incorrect order of the occupied MOs, as discussed above. More-

over, the two lowest valence virtual MOs are nearly generate (5.06 and 5.09 eV). While

Koopmans theorem is rarely accurate, its failure in this system shows that correlation is

essential for determining relative energies of the states with very different charge dis-

tributions (localized on the carboxylate moiety in the σ-system or delocalized in the

π-system). Although CC and EOM-CC methods are invariant with respect to unitary

transformations with active occupied and/or virtual orbital spaces (and are not very sen-

sitive to small variations in occupied-virtual separation), breakdown of the Koopmans

picture suggests that correlation is very important and one may need to go beyond dou-

ble excitations.

According to the EOM-CCSD/6-31G(d,p) calculations, the vertical excitation

energy for the bright state is 4.7 eV, and the wave function of the lowest excited state

has multiconfigurational character dominated by two π→ π∗ transitions. As in the case

of the phenolate, the addition of diffuse basis functions decreases the EOM-EE-CCSD

excitation energy by 0.2 eV. The inclusion of triple excitations results in a decrease of

0.29 eV. We also note excellent agreement between CC3 and CASPT2. The difference

between the SS- and MS-CASPT2 values is slightly larger than in the phenolate (0.2

eV). As discussed below, we consider the SS-CASPT2 value to be more reliable in

this case. Thus, our best estimate of the excitation energy of the bright state in the

carboxylate is 4.2 eV.

The (MS-)CASPT2/ANO-RCC-VTZP calculations of pCA− are, in most aspects,

routine, and one can expect an accuracy of 0.1-0.2 eV42. However, in the analysis of

the results, some care has to be taken owing to potential problems due to the reso-

nance character of the excited states. In particular, the response to one-particle basis set
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expansions, the reference weight in the perturbational treatment of the dynamical cor-

relation, i.e., the weight of the reference CASSCF wave function in the CASPT2 first

order solution, and the difference between SS- and MS-CASPT2 should be carefully

monitored. First, let us establish that the active orbitals of the two species are correct

and that no spurious diffuse orbitals contaminate the CASSCF expansion, which is a

tell-tale sign of either the presence of Rydberg states or the electron detachment con-

tinuum. The active orbitals of both pCA− isomers were inspected visually and found

to be of a valence π-like character. To further quantify the orbital character, we mon-

itored the 〈r2〉 expectation value of the six SA-CASSCF states (for each isomer) and

found that none of the CASSCF states developed diffuse character. Next, we inspected

the reference weights in the state-specific CASPT2/ANO-RCC-VTZP calculations. For

the carboxylate form we found that the fifth root in SS-CASPT2 has a substantially

lower reference weight as compared to the rest. In phenolate we found two states with

somewhat lower reference weights: the fourth and the sixth roots. Inspection on the

weights in the SS-CASPT2 calculation with the ANO-RCC-VDZP basis reveals no

roots with low reference weights (in both isomers). In the carboxylate, the observed

basis set dependence of the reference weight is further aggravated by the fact that the

perturbational correction introduces significant diffuseness and significant mixing in the

MS-CASPT2 procedure. The observed problematic behavior in the MS-CASPT2 calcu-

lations is likely due to low detachment energies of these species and, consequently, the

resonance character of the excited states. As pointed out by Serrano-Andrés et al.79, the

MS-CASPT2 procedure could be overestimating the mixing between reference states

and in this case the SS-CASPT2 results could be more reliable. We also note that the

basis set effects are smaller at the SS-CASPT2 level, e.g., as we go from the ANO-RCC-

VDZP to the ANO-RCC-VTZP basis, the excitation energy of carboxylate decreases by
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0.30 and 0.14 eV at the MS-CASPT2 and SS-CASPT2 levels, respectively. Hence, we

consider the SS-CASPT2/ANO-RCC-VTZP results as our best estimate. Despite the

observed problematic behavior, the differences between the SS- and MS-CASPT2 val-

ues are only 0.02 and 0.2 eV for phenolate and carboxylate, respectively. In the latter

case, the deviation is due to mixing of the nearly degenerate first and second π→ π∗

transitions at the MS-CASPT2 level, which increases the energy splitting between the

two states (Table 2.2). However, the resulting perturbation-modified CAS solution for

the lowest π→ π∗ transition has also significant admixtures of higher CASSCF states.

Moreover, as mentioned above, the perturbative treatment increases the diffuse charac-

ter of the state. Therefore, it is not clear whether the large non-diagonal elements of the

MS-CASPT2 effective Hamiltonian matrix are caused by the interaction of the closely

lying first and second π→ π∗ states or artificial interaction with the continuum. There-

fore, we consider SS-CASPT2 results to be more reliable in the case of carboxylate.

Closely related to the CASPT2 and MS-CASPT2 multireference methods are

MRMP2 and MCQDPT2, respectively. For phenolate, excitation energies computed

with MRMP2 and CASPT2 differ by 0.3 eV. Multistate multireference MCQDPT2

and MS-CASPT2 methods also yield results within 0.3 eV, the MS-CASPT2 excita-

tion energy being higher. The difference is likely due to the IPEA correction used in the

CASPT2 and MS-CASPT2 calculations.

For carboxylate, in contrast, the excitation energies computed with the two sets of

methods are rather different (see Table 2.2). Note that 5.17 eV MRMP2 excitation

energy corresponds to the sixth CASSCF root and the resulting MRMP2 state10. The

CASPT2 excitation energy for the sixth excited state (5.32 eV, ANO-RCC-VDZP) is

only slightly higher than the reported MRMP2 value. However, there is striking differ-

ence between the MS-CASPT2 and MCQDPT2 excitation energies10. The two methods
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differ by: (i) slightly different choices of the zero-order Hamiltonian; and (ii) using inter-

nally contracted versus non-contracted basis for the secondary space in MS-CASPT225

and MCQDPT280, respectively. Overall, one can expect similar performance of the two

approaches. In addition to the above differences, more diffuse basis set was used in Ref.

10. The non-diagonal elements of the MS-CASPT2/ANO-RCC-VDZP effective Hamil-

tonian result in strong mixing between the states, however, the perturbation-modified

CAS solution of the lowest excited state is dominated by the lowest CASSCF excited

root (the effective Hamiltonian matrix and eigenvectors are given in Supporting Mate-

rials for Ref. 60). The mixing between the high-lying fifth and sixth (forth and sixth

with CASSCF/ANO-RCC-VDZP) CASSCF states increases upon the increase of the

basis set to ANO-RCC-VTZP and the lowest perturbation-modified CAS solution is

represented by nearly equal contributions from the second, fifth, and sixth CASSCF

roots. Therefore, the non-diagonal effective Hamiltonian matrix elements that cou-

ple the fifth and the sixth CASSCF/ANO-RCC-VTZP (fourth and sixth with ANO-

RCC-VDZP) states are very sensitive to the basis set. The difference between the

MS-CASPT2 and MCQDPT2 excitation energies could be due to even stronger mix-

ing between these CASSCF states in a more diffuse basis set. Indeed, the MCQDPT2

perturbation-modified CAS solution for the lowest excited state is dominated by the

sixth CASSCF state, and the corresponding excitation energy is 3.05 eV10.

The SS-CASPT2/ANO-RCC-VTZP values of the lowest excitation energies are

4.16 and 2.98 eV, for the carboxylate and phenolate forms, respectively. The CC3/6-

31G+(d,p) values are 4.21 and 2.98 eV, the corresponding EOM-CCSD values are 4.17

and 3.19 eV.

Our best estimates of vertical excitation energies of the bright π→ π∗ state are 3.0

and 4.2 eV for the phenolate and carboxylate forms of pCA−, respectively. The higher
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excitation energy of the carboxylate can be explained by qualitative analysis of the elec-

tronic structure: in the carboxylate, one can expect excitation energy close to that of neu-

tral phenol (4.5 eV81), whereas in the phenolate, the phenol-like electronic structure is

strongly perturbed by the residing negative charge resulting in the red-shifted absorption.

A similar mechanism of the tuning of optical properties of biochromophores was found

to be important in chemically initiated electron-exchange luminescence of luciferins82.

The Hückel model provides an alternative explanation of the observed trend in excitation

energies (see Sec. 2.3.3).

Figure 2.5: Energy level diagram of the ionized and electronically excited states of
the phenolate form. VEE: EOM-EE-CCSD/6-31+G(d,p); VDE: EOM-IP-CCSD/6-
311+G(df,pd).

As mentioned above, an interesting feature of the both isomers is the resonance or

near-resonance character of the lowest bright excited state. However, the two isomers

show qualitatively different types of the resonance. As follows from Fig. 2.5, the S1

state of phenolate is a shape resonance that lies above its own continuum (detachment
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from the HOMO). The energy diagram is different for carboxylate (Fig. 2.6), i.e., the S1

state is above three ionized states corresponding to electron detachment from HOMO-

1, HOMO-2 and HOMO-3 and 0.25 eV below its own continuum (detachment from

HOMO). This is an example of a Feshbach resonance. One would expect longer life-

times for this type of metastable state.

Figure 2.6: Energy level diagram of the ionized and electronically excited states
of the carboxylate form. VEE: EOM-EE-CCSD/6-31+G(d,p); VDE: EOM-IP-
CCSD/6-311+G(df,pd).

It should be noted that the converged energies of the resonance states may differ

from the excitation energies reported here due to basis set effects and interactions with

the continuum. Thus, more elaborate calculations are required to evaluate the positions

of the resonances and the lifetimes of the metastable excited states in these complex

systems.
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2.3.3 Molecular orbital framework

As in the case of GFP14, the trends in electronic properties of the isomers can be

explained by a simple Hückel-like model. Although the resulting excitation and ion-

ization energies cannot be considered as quantitative, this analysis provides a qualitative

explanation of the observed differences between the two isomers.

As the electronic density redistribution mainly involves the bridge region for both

isomers (see Fig. 2.3), the analysis is based on a model system consisting of the three

bridge carbons. Assuming almost perfect resonance for the phenolate, which makes the

three atoms (Cα, Cβ and Cγ) equivalent, the Hückel Hamiltonian is written as follows:

H =


ε α 0

α ε α

0 α ε

 , (2.1)

where ε is an atomic p-orbital energy and α is a coupling matrix element between the

two neighboring centers. This model is exactly equivalent to the Huckel’s solution for

the allyl radical. The diagonalization of this matrix yields the following eigenvalues:

EPh
1 = ε+

√
2α (2.2)

EPh
2 = ε (2.3)

EPh
3 = ε−

√
2α (2.4)

The corresponding eigenfunctions {φi}i=1,3 are depicted in Fig. 2.7. The validity

of Hückel’s description is supported by the analysis of the MOs: the shapes of the

HOMO-5, HOMO and LUMO in the bridge Cα – Cγ region are indeed similar to the
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{φi}i=1,3 Hückel solutions. The corresponding detachment and excitation energies are

−(ε) and −
√

2α, respectively.

Figure 2.7: Schematic representation of the Hückel model eigenfunctions (see text)
and the corresponding MOs for the carboxylate (top) and the phenolate (bottom)
pCA−.

For the carboxylate isomer, BLA in the bridge region is larger suggesting that the

three carbons are no longer equivalent. Assuming εα << εβ = εγ = ε and neglecting the

coupling between Cα and Cβ, we arrive to the following Hamiltonian:

h =


ε′ 0 0

0 ε α

0 α ε

 (2.5)
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which gives rise to the eigenvalues:

ECarb
1 = ε+α (2.6)

ECarb
2 = ε−α (2.7)

The resulting detachment and excitation energies for the carboxylate are (−ε−α)

and−2α. Therefore, Hückel’s model predicts higher excitation and detachment energies

for the carboxylate isomer.

The model yields the following estimates of the transition dipole moments matrix

elements for carboxylate and the phenolate: 〈π|µ|π∗〉 = x0
2 and 〈π|µ|π∗〉 = x0√

2
, respec-

tively, where x0 is the average C-C bond length between the bridge atoms (see Appendix

for Ref. 60). This suggests that the oscillator strength for the phenolate form is higher

than that of carboxylate, which is indeed confirmed by ab initio calculations (see Tables

2.3 and 2.2). Additional details of the Hückel analysis are given in the Appendix for

Ref. 60.

2.3.4 Theory versus experiment

As mentioned above, recent gas-phase action spectroscopy measurements reported iden-

tical absorption maxima for the carboxylate and phenolate isomers of pCA−. As a

source of gas-phase anions, the electrospray technique was used8–10 and the ions were

extracted from water-methanol solution. It has been demonstrated that for tyrosine,

which also exists in the carboxylate and phenolate forms, the electrospray extraction

from methanol-water solution results in the gas-phase mixture with relative abundances

of the two isomers corresponding to the gas-phase equilibrium distribution83. In aqueous

solution, deprotonation of carboxylate is preferable83. It was also shown that the relative
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populations are very sensitive to the presence of methanol in the solution. Thus, it is not

clear which of the pCA− isomers is present in gas phase when the electrospray tech-

nique is used17, 83. To achieve isomer specificity, the methylated analogues of pCA were

used in the experiment10. The comparison of the results obtained for non-methylated

species with the absorption spectra of the methylated compounds is justified because

only a minor effect of methylation on excitation energies was reported for pCA− at the

CC2 level of theory10 and there is good agreement between EOM-CCSD and CC2 for

this system. (see Tables 2.2 and 2.3).

The comparison of our calculations with the experimental spectra [10, ] is presented

in Fig. 2.8. This experiment10 did not distinguish between the detachment and excita-

tion channels. Thus, both detachment and excitation can contribute to the experimental

band. The computed SS-CASPT2/ANO-RCC-VTZP excitation and EOM-IP-CCSD/6-

311+G(df,pd) detachment energies for the phenolate chromophore are 2.98 eV and 2.92

eV, and, therefore, both can be responsible for the band maximum. For carboxylate, the

respective values are 4.17 and 3.91 eV. These values do not agree with the experimen-

tal peak, and the discrepancies are much larger than the anticipated error bars of these

methods.

According to our calculations (and in agreement with previous studies), there are no

transitions below 3.9 in the carboxylate (see Table 2.2). We considered dipole-bound

states84 and isomerization in the gas phase as possible explanations of these discrepan-

cies. The dipole bound states can exist in pCA− (dipole moment 4.82 D for carboxylate

and 3.01 for phenolate neutral radicals), however, they cannot account for the 1 eV

difference.

One of the possible explanations of the experimental results is a contamination of

the carboxylate sample by the phenolate form. If this was the case, the experiment
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Figure 2.8: The experimental spectra and calculated VDE and VEE of the carboxy-
late (top) and phenolate (bottom) forms of pCA−. The experimental maximum is
2.88 eV (430 nm). The heights of the bars representing vertical excitation and ion-
ization energies are arbitrary.

signal could be dominated by the phenolate owing to its much larger oscillator strength.

The reported identical spectra for the two isomers10 support this assumption. Since the

higher-energy region was not probed, the signal due to carboxylate was not observed.

The photo-induced fragmentation channels have been experimentally determined by

registering the masses of the resulting charged fragments10. The 146 amu signal for

the anionic photoproduct was reported for both carboxylate and phenolate (methylated
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pCA−). This channel was ascribed to the detachment of the neutral OCH3 fragment.

Note that the experimental mass resolution was± 2 amu10. The high yield of the neutral

fragments other than ionized chromophore shows that the excitation to the S1 state is

an efficient channel, in addition to possible direct detachment for both forms of the

chromophore. Thus, the experimental absorption bands for phenolate and carboxylate

represent, at least partially, transition to the resonance electronically-excited states.

Open channels

Closed channels

Figure 2.9: Energetically allowed (top) and forbidden (bottom) fragmentation
channels and the corresponding dissociation energies for the phenolate form of
pCA−. D0 and De denote dissociation energies computed with and without ZPE
correction, respectively.

To analyze the fragmentation pathways, we computed dissociation energies for

methylated pCA− in the phenolate and carboxylate forms (Figs 2.9 and 2.10). The

results for non-methylated pCA− are given in the Supporting Materials for Ref. 60. Our
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calculations show that the only energetically allowed channels for the phenolate corre-

spond to the abstraction of CH3 and CH2O, as shown in Fig. 2.9. Within the experimen-

tal mass resolution, formaldehyde (CH2O) is indistinguishable from the OCH3 radical.

Moreover, the mass of the anionic fragment resulting from the CH3 detachment from

pCA− is 151 amu, which is ∼ 91% from the mass of the parent ion, whereas only the

daughter ions with masses in the range of 20-80% of the parent ion mass are captured

in this experimental setup9. Therefore, the predicted photo-fragmentation products for

phenolate agree with the experimental data. For carboxylate, in addition to the detach-

ment of the neutral CH3 and CH2O fragments, there is a low-energy fragmentation chan-

nel leading to CO2 formation. This additional channel is specific for the carboxylate and

can be used as an experimental probe to distinguish between the isomers. No evidence

for CO2 formation was reported in Ref. 10 raising a question about the nature of the

absorbing species. Note that the production of CO2 was reported as an efficient frag-

mentation channel in non-methylated pCA−10.

Besides dissociation, photodetachment has been experimentally registered for the

phenolate form10, which is consistent with computed detachment energies (Table 2.1).

Indeed, the experimental absorption maximum value (2.88 eV) is close to the calculated

VDE (2.92 eV) suggesting an alternative decay route for the excited phenolate form.

Another factor that may affect the spectra is the presence of different rotamers and

low-barrier hindered rotation along single bonds of the chromophore. To quantify the

effect of the phenolic OH group rotation on the absorption spectra of carboxylate, we

computed excitation energies of the anti- and syn- rotamers using EOM-EE-CCSD/6-

31+G(d,p). We found that isomerization has only minor effect on vertical excitation

energy (changes about 0.08 eV). We analyzed conformational flexibility using AIMD

simulations. The average values of C-Cα-Cβ-Cγ and Cβ-Cγ-C(O)-O dihedral angles
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Open channels

Closed channel

Figure 2.10: Energetically allowed (top) and forbidden (bottom) fragmentation
channels and the corresponding dissociation energies for the carboxylate form of
pCA−. D0 and De denote dissociation energies computed with and without ZPE
correction, respectively.

along 2 ps trajectories for the methylated carboxylate are 7.18◦ and 4.7◦ (methylated

phenolate - 9.03◦ and 5.95◦), respectively (T = 298 K). Thus, the chromophore is rather

inflexible and we anticipate no significant distortion of the conjugated π-system due to

rotation along single bonds, and, consequently, no significant variations in excitation

energy.

We suggest that the action spectra measured for the two methylated pCA− isomers

in Ref. 10 are due to the phenolate isomer (which probably contaminated the carboxy-

late sample) based on the following considerations: (i) there are no one-photon transi-

tions (either excitation or ionization) below 3.8 eV in the carboxylate; (ii) the oscillator
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strength for the lowest bright state of the phenolate is three orders of magnitude higher

than in the carboxylate. Thus, a small admixture of the phenolate may result in a rela-

tively large signal; (iii) in the carboxylate there is an additional fragmentation channel

leading to CO2 production, which is not accessible in the phenolate; however, this prod-

uct was not observed in the experiment10; (iv) in the gas phase, phenolate is lower

in energy than carboxylate10. An alternative explanation might be due to two-photon

absorption, however, it does not explain the striking similarity of the two spectra.

2.4 Conclusions

We report an electronic structure study of the excited and ionized states of pCA−, a

model PYP chromophore. We compare the optical properties (vertical excitation and

detachment energies) of the two isomers, phenolate and carboxylate. In addition to the

high-level calculations of the vertical excitation and detachment energies, we present a

qualitative explanation of the observed differences. Our best estimates of vertical excita-

tion energies of the two isomers are 3.0 eV and 4.2 eV (SS-CASPT2/ANO-RCC-VTZP)

for phenolate and carboxylate, respectively. We note excellent agreement between SS-

CASPT2 and CC3 (although the latter was employed with a modest basis set). The

EOM-CCSD values are within 0.2 eV of CC3.

Our results do not support the experimental conclusion that the two isomers have

identical absorption spectra10. As a possible explanation, we suggest contamination of

the carboxylate sample by the phenolate isomer. Due to the large difference in oscillator

strength of the two isomers (three orders of magnitude), a small admixture of phenolate

may result in relatively large absorption. The absence of CO2 fragments (which can

be produced in by the carboxylate) in the experiment supports our suggestion that the

recordered spectrum is due to phenolate. Our work suggests that the experiment should
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be revisited probing higher energies for the spectroscopic signature of the carboxylate

isomer. The production of CO2 at higher energies would confirm the presence of the

carboxylate form.
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Chapter 3: Effect of microhydration on

the electronic structure of the

chromophores of the photoactive

yellow and green fluorescent proteins

3.1 Introduction

Microsolvation is often used to study the effect of individual solvent-solute interac-

tions. For example, the protein environment and bulk water feature multiple hydrogen-

bonding interactions, in addition to covalent linkage and electrostatics. These effects

can be quantified by considering well-defined model systems, such as microhydrated

chromophores1, 2. Hydrogen-bonding interactions in photoactive proteins can modulate

optical properties of the chromophore, as has been demonstrated by theoretical3, 4 and

experimental studies5–10.

This paper focuses on the chromophores of two important photoactive biomolecules,

photoactive yellow (PYP) and green fluorescent (GFP) proteins. PYP, which was found

in the Halorhodospira halophila bacterium11, 12, serves as a blue light receptor of its

host and is responsible for negative phototaxis13. The PYP chromophore is one of the
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simplest model systems for studying spectral tuning by protein (or solvent) environment,

which is relevant, for example, for understanding properties of fluorescent biomarkers14

and the mechanics of color vision15. GFP, which was isolated from jellyfish Aequorea

victoria16, has a natural function of converting blue to green light. Proteins from the

GFP family are widely used as genetically encoded biomarkers for in vivo imaging17–20.

The isolated PYP and GFP chromophores have attracted attention both from exper-

imentalists and theoreticians. The most commonly used model system representing

the GFP chromophore is 4-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI),

whereas for PYP it is para-coumaric acid (pCA). In spite of entirely different biological

functions and origins, their electronic structure has several similar features21. Anionic

forms (deprotonated at the phenol end) play a crucial role in photophysics of both chro-

mophores and feature a phenolate moiety connected by a methine bridge to either imida-

zolinone (HBDI) or carboxylate (pCA). The pCA anion exists in two tautomeric forms

(carboxylate and phenolate) that have different electronic structure and optical proper-

ties22, 23. Both anionic GFP and PYP (phenolate) chromophores can be represented by

the two interacting resonance structures leading the bond-order scrambling and allylic-

like molecular orbitals (MOs) spanning the bridge region21. The character of the bright

state in both chromophores (phenolate PYP isomer) is remarkably similar and can be

described as a π→ π∗ transition between the (allylic-like) HOMO and LUMO21. The

gas-phase calculations of the model PYP (phenolate and carboxylate isomers)4, 22, 24

and GFP25, 26 chromophores have revealed the resonance (i.e., metastable with respect

to electron-detachment and dissociation) character of the first bright excited state. In

both chromophores, the lowest bright state is above electron detachment continuum;

however, the type of resonance is different. In the case of HBDI−25 and the phenolate
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isomer of pCA− 22, the π→ π∗ state is above the state of the neutral derived by remov-

ing the electron from the π orbital (HOMO of the anion) — this type of resonance is

called a shape resonance. In the carboxylate isomer of pCA−22, the excited state is a

Feshbach resonance, as it is located above the continuum corresponding to the ioniza-

tion from a lone-pair orbital and is, therefore, uncoupled (in the Koopmans picture) from

the continuum (see22 for details).

The gas-phase experiments investigated the properties of isolated model PYP27–30

and GFP31–34 chromophores. The properties of the chromophores in solutions have

also been characterized35–45. Rocha-Rinza et al. have studied photo-absorption of

the methylated pCA− phenolate and carboxylate isomers using gas-phase action spec-

troscopy. They reported almost identical spectra for both isomers, in contradiction to

the theoretical results22, 23, 29 that predict higher excitation and detachment energies for

the carboxylate species.

In general, protein environment can significantly alter both geometry and electronic

structure of the chromophore group. In the case of GFP and PYP, however, the protein

appears to have a very small net effect on the absorption maximum, as demonstrated the

action spectroscopy studies27, 29, 33 and high-level calculations46–48. Experimentally, it

has been shown7 (for PYP) that the presence of Glu46 H-bonded to the chromophore

blue-shifts the absorption maximum by about 0.3 eV. The thioester covalent linkage

between the protein and the chromophore, on the other hand, red-shifts the absorption

maximum, as was demonstrated by mutation studies9. The electronic structure calcula-

tions tell the same story — the overall small effect on the absorption is due cancellation

of (somewhat larger) shifts induced by individual interactions48. Thus, it is interest-

ing to investigate how hydrogen-bonding affects the absorption spectrum of the bare

chromophore.
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The effects of H-bonding on electronic structure of the chromophores were stud-

ied by both theory49 and experiment50. Rajput et al. have analyzed the influence of

H-bonding in microhydrated pCA− clusters on the spectral tuning of the PYP chro-

mophore50 employing same action spectroscopy coupled with ion-storage ring and elec-

trospray setup as in their studies of the isolated species27–29. They observed that the

carboxylate isomer prefers to cluster with one water molecule, whereas the phenolate

attaches two water molecules50. The photoabsorption maximum of the dihydrated phe-

nolate chromophore showed an unusually large blue shift of 0.71 eV with respect to the

bare chromophore. Upon excitation, the system was reported to decay via detachment of

the water molecules, in contrast to the relaxation of the bare chromophore via electron

detachment or dissociation29.

Several theoretical studies investigated the effect of the environment on the chro-

mophores’ properties. Gromov et al. have thoroughly studied the effects of the protein4

and hydrogen-bonding interactions49. Owing to the anionic nature of the chromophore

and partial charge-transfer character of the π→ π∗ transition, the influence of environ-

ment is expected to be pronounced. The key results obtained by Gromov et al. are

electrostatic stabilization by Arg52 against autodetachment and spectral shifts due to

the H-bonding with Tyr42 and Glu464. In contrast to the isolated anion, the first excited

state was found to be stable with respect to autoionization. The same result in the hybrid

QM/MM calculations of the protein-bound chromophore51. Thus, the protein environ-

ment converts the exited states into the bound electronic states4, 51. The stabilizing effect

of the protein environment has been also reported for the GFP chromophore whose

detachment energy increases in the protein by approximately 2.2 eV 47.
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Figure 3.1: Model chromophores and hydration sites. From top to bottom:
HBDI−, pCA− carboxylate (PYPa), pCA− phenolate (PYPb). Microhydrated
structures are labeled according to the hydration centers (P or I for HBDI−, and P
or C for pCA−)

In this work, we investigate the effect of microhydration on the relative energy of the

excited and ionized states of the pCA− and HBDI− chromophores, in order to under-

stand how the solvation and the hydrogen bonds formed in the protein environment

affect the spectral properties of the chromophore. The structures of the model chro-

mophores are shown in Fig. 3.1. We employ high-level electronic structure methods to

quantify the effect of adding of one and two water molecules to these model systems

and analyze the structural and spectral changes induced by microhydration.

3.2 Computational details

The model systems used to represent the PYP and GFP chromophores with two sites

of hydration are shown in Fig. 3.1. The geometry of HBDI− was optimized with den-

sity functional theory (DFT) using the ωB97X-D long-range and dispersion-corrected

hybrid density functional52 that includes long-range Hartree–Fock exchange mitigat-

ing the notorious self-interaction error. The 6-31+G(d,p) basis set has been used for

these calculations. For HBDI−, the average deviation of the computed bond lengths
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from the structure26 optimized using a larger basis set (cc-pVTZ) is around 0.005 Å.

Both isomers of pCA− were optimized with resolution of identity Møller-Plesset per-

turbation theory (RIMP2)53–56 with the aug-cc-pVDZ basis set57. The cyclic pCA−

isomers (Fig. 3.2) were optimized with ωB97X-D/aug-cc-pVDZ. The following con-

vergence thresholds were used in the optimization procedure: 1×10−6 hartree for the

energy, 1×10−4 hartree/Å for the energy gradient, and 1.2×10−3 Å for displacements.

All microhydrated pCA− structures have Cs symmetry except PYPa-WC, PYPa-WCWP

and the cyclic isomers. All HBDI− structures are non-planar and have C1 symmetry.

Figure 3.2: Structures of the microhydrated pCA− cyclic isomers. Left: Cyclic
isomer of PYPa (De = 1.38 eV). Right: Cyclic isomer of PYPb (De = 0.68 eV).

Binding energies (De) of different microsolvated isomers were computed with

ωB97X-D/6-311++G(2df,2pd)58 and with RIMP2/aug-cc-pVDZ for the GFP and PYP

chromophores respectively, as the differences between the ground-state energies of the

microsolvated molecule and the dissociation products. The grid used in all DFT cal-

culations contained 75 points in the Lebedev59 radial grid and 302 points in the Euler-

Maclaurin60 angular grid.

Vertical excitation energies for pCA− were computed using equation-of-motion

coupled-cluster method with singles and doubles (EOM-CCSD) for excitation ener-

gies (EOM-EE-CCSD)61–64 with the 6-31+G(d,p) basis set; for the lower-symmetry

cyclic isomers we used 6-31+G(d). Previous benchmark calculations22 for the bare
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chromophore have shown relatively minor basis set dependence of excitation energies,

e.g., increasing the basis beyond a polarized double zeta basis affects the transition ener-

gies of the lowest excited states by 0.1-0.2 eV. Moreover, these errors are systematic, and

are expected to cancel out when solvent-induced shifts are computed65.

Vertical detachment energies were computed by EOM-CCSD for ionization poten-

tials (EOM-IP-CCSD)66–68 with the 6-311+G(df,pd) basis; for the cyclic isomers we

used 6-31+G(d,p). Calculations of the ionization energies of uracil69 by EOM-IP-CCSD

with various bases show that typical error bars in IEs computed with these basis sets are

about 0.2 eV.

EOM-CC methods64 provide accurate and balanced treatment of dynamical and

static correlation energy, accurately reproducing excited and ionized states properties.

In these calculations, we employ well-behaved closed-shell reference states, thus, the

target excited and ionized states are not affected by spin-contamination. The anticipated

error bars for these methods are 0.1–0.3 eV22, 69–71.

Excitation energies for all microsolvated HBDI− have been calculated with SOS-

CIS(D)72, scaled opposite spin configuration interaction singles with the second-order

perturbative doubles correction, and the cc-pVTZ basis set. This method has been shown

to give accurate results for the excitation energies of the isolated and protein-bound

anionic GFP chromophore25, 47. Detachment energies were calculated with ωB97X-

D/6-311++G(2df,2pd). These detachment energies were corrected by using energy addi-

tivity scheme based on the EOM-IP-CCSD/6-311(2+,+)G(2df,2pd) extrapolated value

for the bare chromophore from Ref. 25:

DEhydrated,corrected = DEbare,corrected +DEhydrated,DFT −DEbare,DFT ,
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where DEbare,corrected is the best estimate of the detachment energy of bare HBDI−

calculated by ωB97X-D/6-311++G(2df,2pd) and corrected by the DFT/EOM-IP-CCSD

difference computed in a smaller basis set25.

We also performed benchmark calculations (for HBDI−) to quantify the dependence

of excitation energies on the general and auxiliary basis used in the SOS-CIS(D)72 cal-

culations. The results are given in Supporting Materials for Ref. 73. All calculations

were performed with Q-Chem74.

3.3 Results and discussion

3.3.1 Optimized structures and binding energies of the mono- and

dihydrated chromophores

The equilibrium structures of the bare 22, 25 and monohydrated chromophores are shown

in Fig. 3.3. The effect of microsolvation on the structure is relatively small, e.g. the mag-

nitude of the changes in bond lengths is about 0.01 Å. The effect is larger for HBDI−.

This is because it is more symmetric and the two resonance configurations26 contribute

almost equally to the chromophore structure leading to more allylic character of the

bridge relative to pCA−22 (Fig. 3.1). The water molecules stabilize one resonance struc-

ture more than another, which changes the bond lengths patterns and reduces the allylic

character. Likewise, the phenolate form of pCA− has more allylic character22 than the

carboxylate, which results in a more pronounced geometry changes due to microhydra-

tion.

The microhydrated clusters and corresponding binding energies are shown in

Figs. 3.7–3.2. The lowest-energy monohydrate of PYPa is PYPa-WC in which water

forms two hydrogen bonds with the carboxy oxygens making this structure more stable.
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Figure 3.3: Equilibrium structures of pCA− (left column), HBDI− (right column)
and their monohydrates.

The phenolate isomer, PYPb-WP, has two energetically equivalent structures that have

slightly higher binding energy than PYPa-WC. We found that PYPb-WPWP2 (Fig. 3.8)

isomer is slightly lower in energy (by 0.03 eV) than PYPb-WPWP1 suggested to be the

most stable structure in Ref. 50. In the former case, the two water molecules form a weak

hydrogen bond with each other, which results in additional stabilization. We also found

several cyclic dihydrated isomers (Fig. 3.2). PYPa-cyclic is slightly higher in energy

than the lowest PYPa dihydrate, PYPa-WCWC (by 0.03-0.04 eV), whereas PYPb-cyclic

is significantly less stable than PYPb-WPWP2 (by about 0.5 eV). The cyclic isomers

might play an important role in the pCA− isomerization by proton transfer via water
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chain. Since PYPa is more stable in solution whereas PYPb is more stable in the gas

phase, such a pathway may be responsible for the isomerization upon introducing pCA−

into gas phase by electrospray.

Figure 3.4: Structures and binding energies (De, eV) of microsolvated model sys-
tems of the pCA− (PYPa, carboxylate) chromophore.

We observe that binding energies are nearly additive for all microhydrated systems,

except cyclic isomers. The energy required to detach all water molecules is approxi-

mately equal to the sum of the energies required to detach each water molecule (the

deviations are very small), as illustrated in Fig. 3.5. This suggests that the interaction

energy between water molecules is negligible in comparison to the interaction energy

between the chromophore and water. However, we expect higher non-additive contri-

butions to interaction energy in larger systems, in which the polarization effects giving

rise to three-body interactions are more pronounced (see, for example, Ref. 65).
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Figure 3.5: Binding energies (De, eV) of the HBDI−-water complexes.

3.3.2 Electronically excited and ionized states of microhydrated

pCA−

Previous excitation and detachment energy calculations for the bare PYP and GFP chro-

mophores4, 22, 24–26, 75 show that the excited states are above the detachment continuum.

Such resonance states are common in molecular anions26, 76. In the protein environment,

the excited state is stable with respect to autoionization, thus the environment plays an

important role in stabilizing the anionic species47, 75.
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Table 3.1: Vertical excitation energies (eV), oscillator strengths (fl , in parenthesis)
and detachment energies (eV) of the microhydrated pCA−. Excitation energies
and transition dipole moments were computed by EOM-EE-CCSD/6-31+G(d,p)
and EOM-EE-CCSD/6-31+G(d), respectively, ionization energies — by EOM-IP-
CCSD/6-311+G(df,pd).

System Excitation energy Detachment energy
π→ π∗1 π→ π∗2

PYPa 22 4.50 (0.03) 4.89 (0.019) 3.91
PYPa-WC 4.47 (0.03) 5.13 (0.26) 4.72

PYPa-WCWC 4.49 (0.03) 5.21 (0.58) 5.10
PYPa-cyclica 4.79 5.58 4.29

PYPb 22 3.19 (1.06) 4.23(0.10) 2.92
PYPb-WC 3.12 (1.11) 4.27 (0.09) 3.06
PYPb-WP1 3.25 (1.01) 4.32 (0.08) 3.29

PYPb-WCWP 3.20 (1.07) 4.34 (0.07) 3.37
PYPb-WPWP1 3.38 (0.98) 4.41 (0.06) 3.63
PYPb-WPWP2 3.37 (1.01) 4.34 (0.07) 3.72
PYPb-cyclica 3.78 (0.26) 3.99 (0.13) 2.97

a excitation and detachment energies for the cyclic isomers were calculated by EOM-

EE-CCSD/6-31+G(d) and EOM-IP-CCSD/6-31+G(d,p).
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Figure 3.6: Electronically excited and ionized states in PYPb and PYPb-WCWP.

Vertical excitation and detachment energy calculations for microhydrated pCA−

are given in Table 3.1. The calculations show that in most cases microhydration has

a minor effect on the excitation energies (about 0.1-0.3 eV), whereas the detachment

energies change dramatically (up to 1.2 eV). The water molecules stabilize both ground

and excited states of the anionic chromophore by a similar value, which results in the

mutual cancellation and an overall small change in the excitation energy. Interestingly,

the cyclic forms of pCA− show more pronounced effect of microhydration on the exci-

tation energies (≈0.3-0.6 eV), whereas detachment energy changes less. Large shifts

of excitation energy in this case are due to distortion of the planar π-conjugated sys-

tem of the chromophore. For almost all the structures (except PYPb-WC and all cyclic

forms of pCA−, Table 3.1), the microhydration converts the first excited state to a bound

state (see Fig. 3.6). The same effect was reported for the deprotonated para-coumaric

methyl thioester (pCTMe−) — upon hydration of this species by two water molecules,

detachment energy increases by 0.7 eV, which is sufficient to stabilize the resonance75.

Gromov et al. emphasizes4 that in the case of the native PYP chromophore hydro-

gen bonding plays a similar role, however, the dominant stabilization effects are due to

the positively charged Arg52 residue that acts as a counter-ion leading the detachment
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energy increase by several eV4. Similar conclusions have been derived from a recent

computational study of GFP47. The effects of hydrogen bonding in PYP were reported4

to be most prominent for the states that are less affected by the Arg52 residue. Our

results for excitation energies show blue shifts of 0.1-0.2 eV, which is consistent with

the results of Gromov et al.4, but is in contradiction with the experimentally reported

shifts of 0.71 eV for a dihydrated pCA−. Interestingly, PYPb-cyclic shows the shift in

excitation energy of 0.6 eV, which is close to the experimental observation.

Table 3.2: Vertical excitation and detachment energies (eV) of the microhydrated
deprotonated HBDI. Excitation energies were computed by SOS-CIS(D)/cc-pVTZ,
detachment energies — by ωB97X-D/6-311++G(2df,2pd).

System Excitation energy Detachment energy
π→ π∗1 π→ π∗2 DFT corrected

HBDI− 2.61 4.38 2.66 2.45
HBDI−-WI 2.59 4.50 3.07 2.86
HBDI−-WP 2.64 4.34 3.13 2.92

HBDI−-WIWP 2.59 4.40 3.34 3.13
HBDI−-WIWI 2.62 4.59 3.26 3.05
HBDI−-WPWP 2.71 4.31 3.45 3.24

The HBDI− excitation and detachment energies are collected in Table 3.2. Similarly

to pCA−, bare HBDI− features the resonance excited state25. The addition of water

molecules raises the detachment energy more than excitation energy, thus converting

the resonance into a bound state.

In sum, our results show a moderate change in excitation energies for both the GFP

and PYP chromophores (around 0.1 eV). However, microsolvation does not represent

the solution environment; several solvation shells are required to correctly simulate bulk
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environment65. Interestingly, in most cases, the microhydration does not affect the tran-

sition dipole moments, which change by less than 10 %. However, the second bright

transition in PYPa shows larger sensitivity — monohydration changes it by more than

an order of magnitude (see Table 3.1). This can be explained by the hydration-induced

changes in the wave function. The second transition in PYPa has a mixed character

dominated by excitations from HOMO-1 (which is localized on the carboxylate moi-

ety) and the HOMO (delocalized over the entire π-conjugated system). Addition of a

water molecule on the carboxylate side stabilizes HOMO-1 more than the HOMO thus

increasing the HOMO contribution to the second bright transition. Since the HOMO has

a larger overlap with the target virtual orbital, this leads to the increase of the oscillator

strength (see Supporting Materials for Ref. 73 for more details).

3.3.3 Theory versus experiment: microhydrated clusters of the

PYP chromophore

Recent experimental work of Rajput et al.50 on photoabsorption of microhydrated

pCA− reported interesting results on the energetics of H-bonding and spectral tuning.

It was observed that the phenolate primarily binds two water molecules, whereas the

carboxylate only appears as monohydrate. However, the apparent mass distribution was

affected by the experimental conditions77. Our theoretical results lend no support to

preferential binding, i.e., the analysis of binding energies does not reveal any “magic

numbers”. Binding energies of single water molecule by the carboxylate (PYPa-WC,

Fig. 3.7) and the phenolate (PYPb-WP1 and PYPb-WP2, Fig. 3.8) are comparable (dif-

ference is about 0.18 eV), therefore, the formation of a stable hydrogen bond is antici-

pated in both cases. The binding energy of the dihydrated carboxylate (PYPa-WCWC)

is even higher than for the phenolate (PYPb-WPWP2), therefore, one would except to
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observe the formation of monohydrates and dihydrates in both phenolate and carboxy-

late species. A possible explanation might be due to the potential role of cyclic dihy-

drates in the carboxylate-phenolate isomerization. In the cyclic isomers the carboxylate

and phenolate moieties are connected via a chain of H-bonds forming a perfect path for a

low-barrier proton migration, and, therefore, the carboxylate-to-phenolate isomerization

upon ion extraction from solution (carboxylate is the lowest energy isomer in solution,

whereas in the gas phase, phenolate is more stable) may proceed through the formation

of these isomers, leading to preferential formation of phenolate dihydrates. However,

one can expect similar structures being formed with three and more water molecules.

Thus, the origin for selectivity of binding of one (carboxylate) and two (phenolate)

water molecules is likely to be due to the effects of the trap conditions on the resulting

mass distribution rather than intrinsic energetics of microsolvated chromophores.

Figure 3.7: Structures and binding energies (De, eV) of microsolvated model sys-
tems of the pCA− (PYPa, carboxylate) chromophore.
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Figure 3.8: Structures and binding energies (De, eV) of microsolvated model sys-
tems of the pCA− (PYPb, phenolate) chromophore.

The reported50 photoabsorption maximum of the dihydrated chromophore had an

unusually large blue shift of 0.71 eV with respect to the bare chromophore. Our results

show much smaller shift (0.1-0.2 eV) for the proposed PYPb-WPWP1 isomer, in agree-

ment with Gromov et al.4. The PYPb-cyclic isomer shows large blue shift (0.6 eV),

which is close to the experimental one. The absolute values of calculated excitation

energies are systematically higher (by about 0.3 eV22); however, we expect much better

accuracy for the excitation energy shifts due to error cancellation. Therefore, the experi-

mental absorption maximum could be explained by assuming a strongly non-Boltzmann

population of different isomers in the electrospray-generated sample. However, even
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under non-equilibrium conditions it is not clear why the signal from the lowest-energy

PYPb-WPWP1 isomer that should appear 0.2 eV blue-shifted with respect to the bare

chromophore is missing in the action spectrum.

Upon excitation, the dihydrate was reported50 to decay via the detachment of the

water molecules, in contrast to the bare chromophore, which undergoes electron detach-

ment or dissociation29. Our calculations confirm that, as expected, the energy of water

binding is smaller than the energy for breaking covalent bonds in the molecule or elec-

tron detachment, and that this energy provides sufficient relaxation for the energetic

chromophore to drop below the fragmentation/detachment onset. This holds for all iso-

mers (see Figs. 3.7 - 3.2 for water binding energies, and Ref. 22 for the dissociation

and detachment energies of pCA−). The possible explanation for missing electron-

detachment channel in microhydrated pCA− is stabilization of the resonance excited

state with respect to the continuum that shuts down autoionization and relatively low

cross-sections from direct detachment relative to electron-excitation transitions.

Despite the detailed characterization of electronic structure of excited and electron-

detached state of the microhydrated PYP chromophores, the experimental data by

Rajput et al.50 cannot be fully understood on the basis of the present theoretical results.

More theoretical and isomer-specific experimental studies are necessary to explain the

observed mass distribution of microhydrates and the origin of the 0.7 eV shift in the

observed absorption maximum of dihydrated PYPb, as well as the absence of the direct

detachment channel, which is energetically allowed for most of the pCA− phenolate

microhydrated clusters.
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3.4 Conclusions

We performed comprehensive calculations of mono- and dihydrated clusters of the

model GFP and PYP chromophores in their anionic states (deprotonated HBDI and

pCA). We do not observe significant three-body effects in the binding energies of the

dihydrated species. The lowest energy isomers of the microhydrated species feature

nearly unperturbed chromophores hydrated at the obvious CO sites that host excess

negative charge (phenolate, imidazolinone, carboxylate). In these isomers, the microhy-

dration has small effect on the excitation energies (blue shifts of 0.1-0.2 eV), however,

it increases VDE by 0.2-1.2 eV, which reverses the relative order of the excited and

ionized states. Thus, these isomers cannot explain experimentally observed large blue

shifts in excitation energies.

We have identified several unusual isomers of dihydrated pCA− in which the chro-

mophore is highly distorted and water molecules form a bridge between the carboxylate

and phenolate moiety. We expect that these isomers may play a role in the carboxylate-

phenolate isomerization of pCA−. These isomers feature small changes in the electron

detachment energies, but a large (0.6 eV) blue shifts in the excitation energies, which is

close to the experimentally observed shift of 0.7 eV50.
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Chapter 4: Complex-scaled

equation-of-motion coupled-cluster

method with single and double

substitutions for autoionizing excited

states

4.1 Introduction

Autoionizing (or electron-detaching) states are ubiquitous in physics, chemistry, biol-

ogy, and technology. They are common in energetic environments such as plasmas (elec-

tric arcs, supersonic combustion, plasma displays, extremely hot flames, lightning, polar

aurorae, etc), as well as processes in condensed media initiated by electron attachment to

neutral closed-shell species, as in radiolysis and DNA damage by slow electrons1, 2. Dis-

sociative recombination via autoionizing states is important in interstellar chemistry3, 4.

A new wave of interest to autoionizing states has been stimulated by advances in new

light sources and, in particular, attosecond and X-ray spectroscopies5–9.
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Electronically excited states of closed-shell anionic species are often resonances,

which is relevant to the gas-phase studies of several of biochromophores, such as model

chromophores of green fluorescent10–13 and photoactive yellow14–16 proteins.

Resonance phenomena are not limited to electron ejection processes. Generally,

resonances are associated with non-stationary states of a system that has: (i) enough

energy to break up into two or more subsystems; and (ii) a lifetime long enough to be

characterized experimentally17–19. This implies that the decay process of such energetic

system is long enough compared to the time scale of an observation. Other examples of

resonances include radioactive nuclear decay, molecular predissociation, predesorption

from surfaces, and inelastic scattering phenomena17, 19.

Figure 4.1: Lowest vertical excitation (S1) and detachment energies (D0, Dn) for
model Photoactive Yellow Protein (PYP) chromophores in the phenolate (left) and
carboxylate (right) isomeric forms, the energies are in eV. The character of the reso-
nance state is different in the two isomers. In the phenolate, where electron detach-
ment from S1 to the lowest detachment continuum is a Koopmans-allowed one-
electron transition, the excited state is a shape resonance. Carboxylate, in which
the electron detachment from S1 to D0 is a Koopmans-forbidden two-electron pro-
cess, is an example of a Feshbach resonance.
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Depending on their decay mechanism, metastable states are described as shape or

Feshbach resonancesa,18, 19. In the context of autoionizing (or autodetaching) electronic

states, shape resonances are excited states that are above their own electron-detached

states, such as the π→ π∗ state of the phenolate form of the PYP chromophore, which

lies above electron detachment from the π orbital (Fig. 4.1, left). In this case, electron

detachment is a Koopmans-allowed one-electron process. A Feshbach resonance is an

excited state that is below its own continuum, but above another ionization threshold,

e.g., such as the π→ π∗ state of the carboxylate isomer of the PYP chromophore that lies

above the lowest IE (corresponding to the electron removal from a lone pair orbital), but

below the detachment from the π orbital (Fig. 4.1, right). In this case, electron ejection

is a Koopmans-forbidden two-electron transition and the excited-state decay is governed

by electron correlation. In the present paper, we consider atomic Feshbach resonances,

(2s)2 states in He and H− and 1s22p3s state in Be, which are formally doubly excited

states. In both cases, the decay of the resonance involves the removal of one electron

and a simultaneous transition of the second electron to a lower s-orbital.

Resonances belong to the continuum spectrum and can be described either as non-

stationary solutions of the time-dependent Schrödinger equation or as stationary expo-

nentially diverging solutions of the time-independent Schrödinger equation19, 20. Reso-

nance wave functions obtained in the latter formalism are not L2-integrable and cannot

be represented by expansions over Gaussian basis sets. Moreover, the continuum part

of the spectrum cannot be described by methods such as Davidson diagonalization for-

mulated for discrete eigen-problems. Owing to these features, standard excited-state

aA shape resonance (often called an open-channel resonance) is associated with the shape of potential
curve that has a barrier along the decay coordinate, such as, for example, a particle that can tunnel through
a centrifugal barrier. In this case the shape of the barrier controls the lifetime of the system. Shape
resonances are purely quantum-mechanical phenomena; they become bound states in the semi-classical
limit as h̄→ 0. Feshbach-type resonances arise due to the coupling of a bound state with the continuum
via other degrees of freedom. Such resonances can be described classically.
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Figure 4.2: CIS calculations of the excited states of the phenolate form of the PYP
chromophore. In a small basis set, which is not capable of representing contin-
uum states, the ππ∗ transition (shown in red) appears as an isolated eigen-state
and its energy approximates the position of the resonance. As the basis set is
increased, numerous pseudo-continuum states appear below the resonance, mak-
ing it more and more difficult to compute sufficiently large number of states such
that the resonance is also included. Moreover, the target state of interest begins
to mix with pseudo-continuum states loosing its oscillator strength. In sum, stan-
dard excited-state methods are not capable of yielding converged (with respect to
the basis set) positions of the auto-ionizing resonances and their lifetimes. The
symmetry-decoupled Feshbach resonances, such as ππ∗ state in the carboxylate
form of PYP, are uncoupled from the continuum at the CIS level and their posi-
tions can be computed by standard approaches.

methods cannot tackle resonances, as illustrated in Fig. 4.2 which demonstrates the

behavior of a shape resonance in an excited-state calculationb. However, energies of

bIt can be easily shown that in a CIS calculation the onset of the ionization continuum is exactly at
Koopmans ionization energy (see, for example, Ref. 13). Likewise, in time-dependent density functional
calculations (when using Tamm-Dancof approximation), the continuum states converge to the Kohn-Sham
orbital energies (which may differ considerably from the ∆E values of ionization energies computed
using the same functional). In EOM-CC calculations of excitation energies, the continuum begins at
the respective EOM-IP-CC value (EOM-CC for ionization potentials). Thus, it is straightforward to
determine whether an excited state is a resonance or not at a particular level of theory when employing
these methods. No similar statement can be made for multi-reference methods.
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resonances can be computed by standard methods if they are decoupled from the con-

tinuum by symmetry. These symmetry-decoupled resonances are of Feshbach type and

can only be coupled to the continuum by two-electron excitations. For example, an A′

excited state that lies above A′′ continuum (such as ππ∗ state in the carboxylate form

of PYP), is completely decoupled from the continuum at the CIS (configuration interac-

tion singles) level. However, at the higher levels of theory, such as equation-of-motion

coupled-cluster with single and double substitutions (EOM-CCSD), a weak coupling is

present in the calculation.

There are three different computational strategies for resonances18, 19. The first one

is grounded in Hermitian quantum mechanics and entails using time-dependent frame-

work21–23, stabilization techniques24–26, Stieltjes-Tchebycheff approach27, or comput-

ing resonance energies as poles of scattering matrix28. The second approach is to

impose pure outgoing boundary conditions for the standard molecular Hamiltonian18, 19.

The third strategy is based on analytic continuation of the Hamiltonian to the complex

plane, e.g., via complex scaling17, 18, 29–31 or complex absorbing potential (CAP)32, 33

approaches.

Following second approach, the so-called Siegert formalism, one arrives to an expo-

nentially decaying in time eigenstate and a complex eigenvalue associated with it:

ψres(r, t) = φ(r)exp(−iErest), (4.1)

Eres = ER− iΓ/2, (4.2)

where ER is a resonance position and Γ is a resonance width (Γ = 1
τ
, where τ is a life-

time)17, 19, 20, 34. φ(r) resembles a bound-state wave function inside interaction region

(usually, some sort of a potential well), but is exponentially diverging outside. Alterna-

tively, an identical energy expression can be derived by using a diabatic representation35
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in which resonances are described as bound states coupled with the continuum and by

applying a partitioning technique leading to a non-Hermitian effective Hamiltonian36.

Complex scaling and CAP approaches provide a link between quantum chemistry

methods developed for bound states and resonances such that the resonance wave func-

tion is obtained as a square-integrable eigen-function of a modified non-Hermitian

Hamiltonian (complex-scaled or augmented by CAP). The CAP methods, in which

complex potential −iηŴ devised to absorb the diverging tail of the resonance wave

function is added to the Hamiltonian, were originally developed for shape resonances,

and a special care should be taken when the approach is used for Feshbach resonance

states37. Moreover, CAPs give rise to reflections, and, consequently, the eigenvalues of

the modified Hamiltonian coincide with the resonance poles only in the limit of the zero

CAP strength (even in the complete one-electron basis set)38. Several approaches for

construction of reflection-free CAPs have been suggested37–39.

Figure 4.3: The transformation of the spectrum of the Hamiltonian upon complex-
scaling of all coordinates as described by the Balslev-Combes theorem.

Complex scaling formalism17, 18, 29–31 is an elegant and mathematically rigorous way

to deal with the excited states embedded in the continuum (it can also be used for nuclear

scattering problem). By scaling all electronic (and, in principle, nuclear) coordinates by
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a complex number eiθ (dilation transformation), one arrives to a non-Hermitian Hamil-

tonian operator that has the same discrete spectrum as the unscaled operator and whose

continuum states are rotated into the complex plane by 2θ exposing the resonances, as

illustrated in Fig. 4.3. Under this transformation the resonance wave function becomes

L2-integrable, provided that angle θ exceeds a critical value θc
19:

θc = atan
Γ

2(ER−Et)
(4.3)

where Et is the threshold, i.e., ionization or detachment energy. ER and −iΓ/2 are real

and imaginary parts of the resonance eigenvalue, according to the Siegert representation

from Eq. (4.2).

Formally, complex scaling can be applied in the same manner to both atomic and

molecular systems; however, in the latter case additional steps are necessary in order

to extract physically meaningful potential energy surfaces from complex-scaled Born-

Oppenheimer calculations19, 40.

Complex scaling and CAP techniques have been applied to several ab initio meth-

ods. Complex-scaled and CAP Hartree-Fock (HF)41, 42 and density functional the-

ory (DFT)43 methods have been introduced; these approaches are only applicable for

metastable ground electronic states. Complex-scaled configuration-interaction (CI)41

and multiconfigurational self-consistent field (MCSCF)42 were successfully used to

study resonances in atoms and small molecules, e.g., He, H2, Be−40–42, 44. Complex-

scaled multiconfigurational time-dependent HF method has been applied to describe

doubly-excited resonance states in Be45. Fock-space multireference coupled-cluster

methods combined with CAPs have been developed by Pal and co-workers46, 47.

Recently, a CAP version of EOM-CCSD for electron attachment (EOM-EA-CCSD) has
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been reported by Ghosh et al.48 and applied to study electron-attached states of neutral

molecules.

Here, we present an implementation of the complex-scaled EOM-EE-CCSD method

designed to study electronically excited resonance states in systems with bound ground

electronic states. In EOM-EE-CC the excited-state wave function is described by exci-

tation operators R acting on the reference-state CC wave function:

|Ψ〉= R̂eT̂ |0〉 (4.4)

where |0〉 is the reference Slater determinant (usually satisfying HF equations) and T̂

is a coupled-cluster operator. EOM-EE-CC ansatz enables simultaneous treatment of

non-dynamical and dynamical electron correlation, yields spin-pure wave functions, and

provides a balanced description of states of different character. Thus, EOM-CC is a nat-

ural choice for extending excited-state methodology to resonances via complex scaling

and CAP approaches.

The excitation level in operators T and R can be truncated giving rise to the hierar-

chy of approximate EOM-CC models converging to the exact solution. In this paper, we

consider EOM-CC with single and double substitutions, EOM-CCSD. We present the

complex-scaled EOM-EE-CCSD method (cs-EOM-EE-CCSD) and provide the details

of the implementation. We then consider Feshbach 2s2 resonances in He, H−, and Be.

Since Feshbach resonances decay is a two-electron process, it is governed by electron

correlation. Consequently, complex-scaled HF or CIS cannot predict lifetimes of Fesh-

bach resonances49.

For two electron systems such as He and H−, EOM-EE-CCSD is equivalent to full

configuration interaction (FCI) and is, therefore, exact in terms of many-electron expan-

sion. Thus, we can focus on one-electron basis set dependence of the results. One

96



of the well-known drawbacks of complex scaling approach is its extreme sensitivity to

one-electron basis set size, which is commonly attributed to a more diffuse character

of resonances and their coupling with the continuum. We analyzed the physical origins

of this dependence and found that for the Feshbach resonances the dependence is due

to electron correlation. In particular, a balanced description of angular and radial elec-

tron correlation is important for obtaining converged results. These findings allow us to

develop guidelines for choosing basis sets which are optimal for resonances.

The structure of the paper is as follows. The theory of cs-EOM-EE-CCSD and

implementation details are given in Sec. 4.2. The results of benchmark calculations

are discussed in Section 4.3. The basis set effects are discussed in Sec. 4.3.1. The

application of cs-EOM-EE-CCSD to many-electron systems and the importance of the

reference-state choice are discussed in Sec. 4.3.2. Our concluding remarks are given in

Sec. 4.4.

4.2 Complex-scaling formalism: General theory and

EOM-EE-CCSD implementation

Upon complex-scaling (or dilation) transformation the original molecular Hamiltonian

is transformed in such a way that resonance wave function can be obtained as a square-

integrable eigenfunction of the complex-scaled Hamiltonian [given that the complex-

scaling parameter, θ, is greater than the critical value, see Eq. (4.3)]17, 18, 29–31, 50. Both

the electronic and nuclear coordinates are scaled by the factor eiθ (r→reiθ, R→Reiθ).

The resulting Hamiltonian is non-Hermitian and, therefore, can have complex eigenval-

ues. The scaled molecular Hamiltonian assumes the following form:
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Hθ = e−2iθTN + e−2iθTe + e−iθVNN + e−iθVNe + e−iθVee (4.5)

The theoretical justification of complex scaling is given by the Balslev-Combes the-

orem29–31. As illustrated in Fig. 4.3, (i) the eigenvalues corresponding to the bound

states of the original Hamiltonian and the threshold energies (ionization or electron-

detachment energies) are unaffected by the complex scaling transformation; (ii) the seg-

ments of the continuum starting at the thresholds are rotated by 2θ down to the complex

plane; (iii) new complex, discrete eigenvalues of Hθ may appear in the lower half of

the complex energy plane; they are associated with the resonance states. The real (ER)

and imaginary (-Γ/2) parts of the eigenvalue correspond to the resonance position and

width (Γ), respectively, and the lifetime is 1/Γ, as in Eq. (4.2). As a result, L2-integrable

complex eigenfunction of the Hθ associated with the resonance state can be computed

in a way similar to conventional quantum chemistry calculations.

Mathematically, this transformation can be described as a similarity transformation

(see, for example, Ref. 18):

H(θ) = ŜHŜ−1

Ŝ = eiθr ∂

∂r

As such, it does not alter the discrete spectrum of the Hamiltonian; yet, it converts

resonance wave functions into ”bound”-like wave functions that can be considered as a

part of the ”generalized” Hilbert space19.

The observation that complex scaling is a similarity transformation highlights inter-

esting parallels between complex scaling and EOM-CC techniques. In the latter, the

similarity transformation permits obtaining accurate correlated many-electron energies
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using compact expansions of the wave function, i.e., one can perform a similarity

transformation that results in H̄ = e−T HeT (where T is coupled-cluster substitution

operator) whose lowest eigen-state is just a single Slater determinant, Φ0, and the

respective eigen-energy is exact. Such transformation would require the operator T

to include up to N-electron excitations; however, an approximate T including only

singles and doubles still yields rather compact wave functions and accurate energies. In

complex-scaling formalism, one obtains energies of continuum states from a spatially

compact (i.e., L2-integrable) wave function. In the case of exact solution (that requires

using a complete one-electron basis set) the energies are independent of θ and the

bound states are unaffected by the transformation, but in a finite representation, the

approximate solutions deviate from the exact result (energies of bound states may

change, and energies of resonances are θ-dependent). An important difference between

the two cases, however, is that similarity transformation in complex scaling formalism

affects boundary conditions, whereas in EOM it does not.

To implement a complex-scaled ab initio method, one can either employ complex

basis functions, or work with real one-electron basis and to scale the Hamiltonian matrix

elements:

Hi j = Ti j +Vi j→ Hi j(θ) = e−2iθTi j + e−iθVi j. (4.6)

In the latter case (the so-called direct approach), a complex wave function is represented

by an expansion in the basis of Slater determinants built from real orbitals, but with com-

plex expansion coefficients (amplitudes). Such approach allows one to employ standard

quantum chemistry codes for one- and two-electron integrals computed using Gaussian
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basis functionsc. Our implementation of the cs-EOM-EE-CCSD method is based on the

direct approach.

There are several subtleties related to the complex scaling approach that deserve

special attention. In particular, the Balslev-Combes theorem is only strictly valid for the

exact solution, whereas truncated one- and many- electron basis sets introduce depen-

dency of eigenvalues on the complex-scaling parameter, θ. Complex-scaling makes

the Hamiltonian non-Hermitian, which requires reformulation of variational principle

such that it can be used in the framework of variational methods such as HF or CI

(to emphasize the difference, the name “complex stationary principle” is often used).

These implications of the complex-scaling of the electronic Hamiltonian for practical

quantum-chemistry calculations are discussed below.

In addition, Born-Oppenheimer approximation applied to complex-scaled molecular

Hamiltonian results in electronic Hamiltonian with nuclear coordinates shifted to the

complex plane (see discussion in supplementary material for Ref. 51). However, this is

not a concern for atomic resonances that are the focus of this paper.

4.2.1 C-product versus scalar product

A non-Hermitian form of the complex-scaled Hamiltonian implies modifications of

standard quantum chemistry approaches developed for bound states of the original

molecular Hamiltonian. One can use a generalized variational principle based of

bi-orthogonal formulation, similarly to non-Hermitian EOM-CC theory52, 53. In this

cHere, the non-complex-scaled HF reference is assumed. If the complex-scaled HF is employed
molecular orbitals are no longer real. In this case an integral transformation routine has to be modified
accounting for the transformation from integrals computed in the real AO basis to the basis of complex
MO.
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approach, one considers left and right eigenstates, < ΨL| and |ΨR >, of the Hamil-

tonian and formulates stationary principle by using the following expectation value:
<ΨL|H|ΨR>
<ΨL|ΨR> .

In the case when the initial Hamiltonian is Hermitian complex-scaling transforma-

tion renders it into the complex-symmetric form and bi-orthogonal variational prin-

ciple turns into a complex analogue of variational principle employing so-called c-

product18, 54, 55, 〈ψi|ψ j〉C =
R

ψiψ jdr, instead of the standard scalar product, 〈ψi|ψ j〉=R
ψ∗i ψ jdr. Sommerfeld and Tarantelli56 compared the performance of c-product and

regular scalar product for iterative diagonalization of complex-symmetric matrices in

the context of CAP/CI. Although both formulations are legitimate for the case when

real orbitals are involved, they found that the c-product version is less numerically sta-

ble56.

Since EOM-CCSD similarity-transformed H̄ is non-Hermitian by itself, the EOM-

EE-CCSD equations can be formulated exploiting stationary principle for the biorthog-

onal space of left and right eigen-vectors (see 53 and refs. therein), the validity of which

is not affected by complex-scaling transformation.For the implementation of cs-EOM-

EE-CCSD that involves non-complex-scaled HF and non-complex-scaled CCSD, the

difference between c-product and scalar product only appears at the cs-EOM-EE-CCSD

stage of calculation.All calculations reported here for the He and H− 2s2 resonances

were performed using full diagonalization of the Hamiltonian matrix. As the guess vec-

tors employed in these calculations have no imaginary component, c-product and regular

scalar product formulations are equivalent in this case. In the cs-EOM-EE-CCSD imple-

mentation based on complex-scaled HF and CCSD, we employed c-product in all three

steps (HF, CCSD, and EOM).
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4.2.2 One- and many electron basis sets

Balslev-Combes theorem is formulated for operators H and Hθ. Thus, when their basis

set representations are used, the theorem is valid only in the limit of the exact represen-

tation of the Hamiltonian. That is, only when H and Hθ operators are represented in the

complete one- and many- electron bases, the theorem holds true. Obviously, this is not

the case for a finite one-electron basis set and truncated wave function expansion41, 54.

When using incomplete one-electron bases, the eigen-values become θ-dependent

and θ-trajectories, E(θ), need to be computed. If eigenvalues become nearly stationary

with respect to θ at some value (θopt), one can reason that in the vicinity of such θopt

the Balslev-Combes theorem holds approximately and the respective E(θ) exhibits the

behavior as in the exact limit. Thus, the “best” value of E(θ) is E(θopt). Moreover,

stationary E(θ) ensures that the virial theorem is satisfied for the resulting resonance

solution19, 54. Moiseyev and co-authors proved that optimal θ (dE/dθ = 0, θ = θopt)

corresponds to a cusp in the θ-trajectory plot when only real (imaginary) part of θ is

varied and imaginary (real) part is kept fixed57, 58. From the practical point of view, the

stationary point corresponding to the minimal value of the |dE
dθ
| provides an estimate of

resonance’s position and lifetime. The value |dE
dθ
|θ=θopt quantifies to which degree the

stationary condition is satisfied (or, rather, unsatisfied) at θopt .

As illustrated below, despite the L2-integrable character of the target wave function

the complex-scaled calculations are much more sensitive to the completeness of one-

electron basis set than standard ab initio methods. The reasons for this sensitivity are

the following. First, the interaction of the resonance state with continuum needs to be

accurately described. Thus, one needs to employ relatively diffuse basis sets. Second,

although complex-scaling does not change the eigenvalues of bound states (in the com-

plete one- and many- electron limit), it does change the corresponding wave functions
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introducing oscillatory behavior, which is most prominent for core electrons in many-

electron systemsd,59, 60. To accurately describe these changes of the wave function along

θ-trajectories, sufficiently flexible bases are necessary. Finally, as demonstrated below,

for Feshbach resonances (whose lifetimes are determined by electron correlation), basis

sets need to be capable of describing both radial and angular correlation accurately and

in a balanced way. Below we quantify these effects and explore strategies for devel-

oping more compact basis sets, which is necessary for applications of complex-scaling

methods to realistic systems.

A number of approaches have been developed to tackle the core electrons problem59,

the simplest of which is a subtracted-core technique; it can be easily applied in complex-

scaled EOM-EE-CCSD by freezing core electrons in post-cs-HF calculations.

4.2.3 Complex-scaled EOM-EE-CCSD

Detailed discussion of the EOM-EE-CCSD method is available in numerous original

and review papers (see, for example, Refs. 52, 53, 61–64). Here, only the main aspects

relevant for the comparison between the regular and complex-scaled EOM-EE-CCSD

approaches are summarized.

dAt small r, a one-electron function for an electron in a many-electron atom can be approximately
described as φ(r)≈ Rnl(r)exp(−Zr/na0)Ylm(θ,φ), where Rnl are hydrogenic radial functions and Z is the
nuclear charge59. In addition to scaling the radial part, complex scaling (r→ reiθ) introduces an oscillatory
behavior to the one-electron function: Rnl(reiθ)exp(−Zrcos(θ)/na0)exp(−iZrsin(θ)/na0))Ylm(θ,φ).
One can clearly see that oscillations are larger for higher values of the nuclear charge.
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We begin with the excited-state wave function ansatz given by Eq. (5.2) with R̂

including single and double excitations:

R̂ = R̂0 + R̂1 + R̂2 (4.7)

R̂0 = r0 (4.8)

R̂1 = ∑
ia

ra
i a†i (4.9)

R̂2 =
1
4 ∑

i jab
rab

i j a†b† ji (4.10)

The amplitudes T̂ are computed by solving the CCSD equations for the reference state.

Since T̂ and R̂ commute, R |0〉 is an eigen-function of the similarity-transformed Hamil-

tonian, H̄ = e−T HeT . Thus, amplitudes R̂ are found by diagonalization of the normal-

ordered similarity-transformed Hamiltonian (H̄N = H̄ − ECC, ECC = 〈0| H̄ |0〉) in the

basis of the reference, |0〉, singly, Φa
i , and doubly, Φab

i j excited determinants:


0 H̄OS H̄OD

0 H̄SS−ECC H̄SD

0 H̄DS H̄DD−ECC




R0

R1

R2

 = ω


R0

R1

R2

 (4.11)

As amplitudes T̂ satisfy the CCSD equations, HOS and HOD equal to 0, and, there-

fore, excited states are not coupled to the reference. Therefore, the diagonalization is

performed in the singles and doubles block of the H̄N matrix. To compute several low-

est eigenvalues of the H̄N matrix, the generalized Davidson iterative diagonalization
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method is employed65–67. The σ-vectors corresponding to the product of H̄ and trial

vectors required for Davidson diagonalization have the following form:

σ
a
i = [(H̄SS−ECC)R1]

a
i +[H̄SDR2]

a
i (4.12)

σ
ab
i j = [H̄DSR1]

ab
i j +[(H̄DD−ECC)R2]

ab
i j . (4.13)

These equations provide the starting point for the derivation of the so-called pro-

grammable expressions.

Complex-scaled EOM-EE-CCSD can be formulated using three different

approaches that can be arranged in the following hierarchical order: (i) cs-EOM-

EE-CCSD/CCSD/HF in which complex-scaling is introduced only in EOM; (ii) cs-

EOM-EE-CCSD/cs-CCSD/HF with both EOM and CC steps performed employ-

ing complex-scaled Hamiltonian; (iii) fully complex-scaled approach, cs-EOM-EE-

CCSD/cs-CCSD/cs-HF. We have implemented all three models. Since similarity-

transformed H̄ has the same spectrum as original H, the first approach should yield the

exact spectrum in the limit of complete one and many- electron bases. Since the present

implementation is aimed to autoionizing excited states for systems with closed-shell

bound ground states, the main focus of this paper is on cs-EOM-EE-CCSD/CCSD/HF.

For Be 1s22p3s resonance, we report the results computed with all three methods. The

detailed comparison of the three schemes is the subject of the future work.

Žd’ánská and Moiseyev recently showed that complex-scaled HF orbitals used in

complex-scaled active-space CI calculations of He atom doubly-excited resonance state

are superior to real non-complex-scaled orbitals41. One can expect similar behavior for

cs-EOM-EE-CCSD, i.e. the reference state will affect the final solution in particular
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for large values of complex-scaling parameter θ when conventional HF reference is no

longer a good approximation to a mean-filed stationary solution for Hθ.

Practically, scaling of the H̄θ matrix elements is achieved by scaling all terms includ-

ing two-electron integrals, 〈pq||rs〉, by the factor e−iθ and by splitting all terms contain-

ing the Fock matrix into two parts, i.e., the kinetic energy part which is scaled by the

factor e−2iθ, and the rest of one-electron part and mean-field two-electron contribu-

tion scaled by e−iθ. Therefore, complex-scaling transforms the EOM-EE-CCSD matrix

equations, Eq. (4.11), to the following form:


0 H̄θ

OS H̄θ
OD

H̄θ
SO H̄θ

SS−Eθ
CC H̄θ

SD

H̄θ
DO H̄θ

DS H̄θ
DD−Eθ

CC




R0

R1

R2

 = ω


R0

R1

R2

 (4.14)

where Eθ
CC = 〈0| H̄θ |0〉.

Note that Eθ
CC, ω, and amplitudes in R0, R1, R2 operators are now complex. Using

non-complex-scaled CCSD reference, which does not satisfy complex-scaled CCSD

equations, introduces coupling between the reference and excited states, i.e., H̄θ
SO and

H̄θ
DO are no longer zeroes. Furthermore, additional disconnected terms appear in the H̄θ

DS

block (see supplementary materials for Ref. 51). Therefore, in contrast to EOM-EE-

CCSD, ground and excited states interact and iterative Davidson diagonalization of H̄θ

in the basis of |0〉, Φa
i and Φab

i j has to be performed, similar to EOM-EE-CCSD(2,3)68.

The cs-EOM-CCSD/cs-CCSD equations, in which the reference is decoupled from the

target states, do not have such additional terms; these equations are solved in the singles

and doubles block as in regular EOM-EE-CCSD.
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The corresponding Davidson σ-vectors are:

σ0 = H̄θ
OSR1 + H̄θ

ODR2 (4.15)

σ
a
i = (H̄θ

SOR0)a
i +((H̄θ

SS−Eθ
CC)R1)a

i +(H̄θ
SDR2)a

i (4.16)

σ
ab
i j = (H̄θ

DOR0)ab
i j +(H̄θ

DSR1)ab
i j +((H̄θ

DD−Eθ
CC)R2)ab

i j (4.17)

The programmable equations are given in supplementary material in Ref. 51. The result-

ing equations are implemented using our new general tensor library69, 70.

4.3 Results and discussion

A very unfavorable feature of complex-scaling formalism is that the incompleteness of

one- and many- electron bases leads to the θ-dependence of the eigen-values of the

scaled Hamiltonian, for both the ground and target resonance states. We address the

effects of the one-electron basis set by considering two-electron systems, He and H−,

for which cs-EOM-EE-CCSD provides exact (in a given one-electron basis) solution

and which have been extensively studied.

4.3.1 Two-electron systems: 2s2 resonances in He and H−

Although the resonances in complex scaling formalism become L2-integrable, the

choice of the optimal basis set for description of the resonance states is not trivial.

The optimal basis should be diffuse enough to be suitable for pseudo-continuum states,

which can be mixed with the resonance, and flexible enough to describe the wave func-

tion transformation upon complex scaling. Moreover, the basis should be sufficiently
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flexible to accurately describe electron correlation, which is essential for Feshbach res-

onances.

To gain insight into these effects, we performed the following sets of calculations:

• We demonstrate the convergence of the resonance energy and lifetime for the He

2s2 state using a large even-tempered spd basis. This calculation also validates

our implementation.

• We investigate the utility of standard basis sets in complex-scaling calculations by

considering various polarized triple-zeta and higher-quality basis sets.

• The effect of adding diffuse basis functions to standard basis sets was analyzed

by considering the same valence set augmented by an increasing number of the

diffuse basis functions.

• The effect of higher angular momentum functions was analyzed by comparing

basis sets of approximately same size but having different number of s, p, and

d-functions.

• The effect of uncontracting of the valence basis functions in the standard bases

was analyzed.
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Each diffuse series (s, p, and d) used to augment standard basis sets consisted of

even-tempered basis functions. The first exponents in the series, which are basis-set

specific, and the scaling factors are summarized in Table 4.1. The full diagonalization

procedure of the similarity-transformed Hamiltonian has been employed. The values of

the resonance energies and lifetimes for different bases are summarized in Tables 4.2

and 4.3.

Resonance energies and lifetimes convergence to the exact limit: An even-tempered

30s15p10d basis

To demonstrate the convergence of the He (2s)2 resonance energy and lifetime with

respect to the one-electron basis set we employed an extensive and flexible basis,

namely, an even-tempered 30s15p10d basis from Ref. 41. The real and imaginary parts

of the resonance eigenvalue at the stationary point of the resulting θ-trajectory (Fig. 4.4)

are -0.77776 and -0.00223 a.u., respectively. The values are in agreement with the solu-

tion obtained employing Hylleraas basis: -0.77787 and -0.00227 a.u.71. Even though

the resonance energy and lifetime are very close to the numerically exact values, the

ground-state energy still has a noticeable imaginary part (7.46×10−4 a.u., θ=0.450).

We also obtained satisfactory results by truncating the 30s15p10d basis by removing the

most diffuse 10s, 5p, and 5d basis functions (the size of the resulting basis is thus 75):

-0.77778 and -0.00224 a.u., for the real and imaginary parts, respectively. In contrast,

increasing the scaling factor used to form even-tempered basis or removing d-type basis

functions from the basis have pronounced effects on the shape of the θ-trajectory and

the resulting eigenvalue at the stationary point (Fig. 4.4, Table 4.2). The origins of these

effects are discussed in details below.
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Figure 4.4: θ-trajectories for the 2s2 Feshbach resonance in He shown on different
scale. Angle θ varies from 0 to 0.500 radian (step 0.025 rad). 30s15p10d basis cor-
responds to even-tempered basis, the gaussians’ exponents values, α, vary within
the range: 10−7 ≤ α ≤ 100, 2.66× 10−4 ≤ α ≤ 30, and 2.66× 10−4 ≤ α ≤ 30 for s,
p, and d functions respectively. 30s15p is the same basis without d-type basis func-
tions. 20s10p5d (a) is formed from 30s15p10d by exclusion of the 10 s-, 5 p-, and
5 d-type most diffuse basis functions. 20s10p5d (b) even-tempered basis covers the
same range of the gaussians’ exponents, but with a greater scaling factor.

These calculations illustrate the sensitivity of the results to the basis set and pro-

vide validation of our implementation. Our next step is to investigate whether highly-

optimized standard basis sets, such as series of Dunning bases that are known to pro-

vide accurate and balanced description of electron correlation in the ground and excited

states, may be efficiently employed in calculations of resonances. Our aim was to reduce

basis set size by combining these standard basis set with additional even-tempered func-

tions.

Standard basis sets and the effect of diffuse basis functions

One may expect that accurate description of resonances requires large number of diffuse

basis functions. Even in the complex-scaling case, when the wave function becomes
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square-integrable, the exponent can be quite small featuring a tail that (slowly) goes to

zero at infinity.

Figure 4.5: cs-EOM-EE-CCSD total energies for the ground and 1S excited states
of He (left panel) and H− (right panel). θ values corresponding to θopt for the aug-
cc-pVTZ+[10s5p5d] basis are 0.200 and 0.225 for He and H−, respectively. Three
rays with the origin at the three lowest IEs of He and H− and rotated by the angle
2θ to the lower complex plain are shown in black. In the limit of the complete basis
set the rays should coincide with the corresponding continuum branches.

To analyze the convergence of the results with respect to adding diffuse basis func-

tions, we augmented the aug-cc-pVTZ basis by the diffuse basis functions: 3s, 3s3p,

3s3p3d, and 10s5p5d (i.e., 3s3p set consists of three additional s-functions and 9 p-

functions). Fig. 4.5 shows cs-EOM-EE-CCSD (equivalent to FCI) total energies of the

ground and 1S excited states of He and H− atoms for θ = 0.200 and 0.225 rad, respec-

tively. Unless mentioned otherwise, θ is real, which means that the cusp conditions for

θ-trajectories are not necessarily satisfied, as the optimal θ may be complex.

Extension of the 3s diffuse set to 3s3p and 3s3p3d does not change the qualitative

behavior of the spectrum upon complex scaling but, as will be shown below, is cru-

cial for the quantitative description of the resonance energy and lifetime. We observe

3 branches formed by discretized continuum eigen-states corresponding to excitation
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to very diffuse molecular orbitals. Those branches exhibit behavior dictated by the

Balslev-Combes theorem and are rotated by the angle close -2θ to the lower complex

plane with respect to the corresponding ionization energy. The ground state energy

lies very close to the real axis and its energy is close to that of the unscaled H̄.

The absolute values of the energy deviation are 1.67x10−3/1.64x10−3/1.64x10−3 and

3.08x10−4/1.69x10−4/1.69x10−4 hartree for aug-cc-pVTZ basis with 3s/3s3p/3s3p3d

diffuse sets for He and H−, respectively. These energy deviations are mainly due to

the drift in the real part of the eigenvalue as θ changes from 0 to θopt , for example, for

aug-cc-pVTZ+[3s] the shifts in real and imaginary part for He and H− are –1.65x10−3/–

2.4x10−4 (Re/Im) and –3.62x10−4/5.5x10−5, respectively. The 2s2 resonances for both

systems lie close to the real axis.

Figure 4.6: θ-trajectories for the 2s2 Feshbach resonance in He shown on different
scale. Angle θ varies from 0 to 0.500 radian (step 0.025 rad). See text for the diffuse
subsets (3s, 3s3p, 3s3p3d, 10s5p5d) exponents definition.

θ-trajectories for the He 2s2 resonance computed with the aug-cc-pVTZ basis aug-

mented with different diffuse subsets are shown in Fig. 4.6. As discussed in Sec. 4.2, the

resonance eigenvalues are identified as a point with the lowest absolute value of energy

derivative with respect to the complex scaling parameter, |dE
dθ
|. Further extension of the

3s diffuse subset to 6s basis functions results in only minor changes in the resonance
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trajectories (not shown, see supplementary materials in Ref. 51, Fig. S1). Thus, the

aug-cc-pVTZ+3s basis recovers the bulk of the radial electronic correlation. In contrast,

additional diffuse p-orbitals (3s3p) are crucial for accounting for angular electronic cor-

relation in the resonance state. As one can see, the shape of the resonance trajectory

changes dramatically upon switching from the 3s to the 3s3p subsets. Further addition

of higher angular momentum basis functions (3s3p3d) does not have notable effect on

either shape of the trajectory or the resulting resonance energy and lifetime. There-

fore, the aug-cc-pVTZ+3s3p basis is sufficient to account for the most of the radial and

angular electronic correlation contributions. Indeed, the real and imaginary parts of the

resonance energy for aug-cc-pVTZ+3s3p (-0.7751 and -0.0017 hartree) are close to the

exact solution for He 2s2 resonance (-0.7779 and -0.0023 hartree71) The best agreement

with the exact solution is achieved for the aug-cc-pVQZ basis with the 3s3p diffuse sub-

sets (ERes =−0.7768− i0.0020 hartree). Note that the values change only slightly upon

further extension of the diffuse set to 10s5p5d (ERes = −0.7769− i0.00196 hartree).

We observe the same trends for the H− 2s2 resonance state. Addition of the 3p diffuse

functions results in dramatic change in the trajectories shape (Fig. S2). The resulting

resonance positions and widths are given in Table 4.3.

Despite being convenient for ab initio calculations, L2-integrable Gaussian basis

functions are not optimal for the description of the continuum states. However, Gaus-

sians can be used to approximate the continuum states75–77. In attempt to reduce

the number of required diffuse basis functions and to achieve more uniform approx-

imation of the continuum states, we considered the 6-311(+,+)G(d,p)+[3s3p3d] basis

augmented by diffuse functions distributed in the vertices on the dodecahedron grid

(one s-type basis function per vertex located 1 Å from He, with the exponent of

0.02772). The θ−trajectories for 6-311(+,+)G(d,p)+[3s3p3d] with grid-distributed basis
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functions (54 basis functions), and atom-centered basis of the comparable size 6-

311(+,+)G(d,p)+10s5p5d (56 basis functions) are shown in Fig. S3 in supplementary

material for Ref. 51. Using the grid refines the solution, making the trajectory more

compact and the singularity point more pronounced. However, there is no significant

change in the resulting resonance position and width. In addition, the employed basis

functions are relatively compact, and the improvement in the resonance states descrip-

tion is likely to be not because of better approximation of the continuum, but because

of the better description of the angular electronic correlation. The trajectories computed

for the more sparse grid, or more diffuse Gaussian exponent do not lead to any improve-

ment in comparison to the atom-centered basis set (see supplementary material for Ref.

51, Fig. S3). In short, the addition of grid-distributed functions does not lead to a signifi-

cant improvement in the description of the resonance states relative to the atom-centered

ones, which is consistent with a rather compact wave function of the resonance state, as

discussed below.

The effect of the valence basis set

Whereas it is not surprising that the description of resonance states is sensitive to the dif-

fuseness of the basis, the variations in the valence basis set also have a profound effect

on the shape of θ-trajectories. This is illustrated in Fig. 4.7 that compares θ trajecto-

ries computed with three different valence basis sets [6-311(+,+)G(d,p), aug-cc-pVTZ,

and aug-cc-pVQZ] augmented with similar diffuse subsets. Despite notable change in

the shapes of θ-trajectories for He 2s2 resonance (Fig. 4.7), the shift in the resonance

position and width is rather small, e.g., transition from the 6-311(+,+)G(d,p) to aug-

cc-pVQZ basis results in the shift of < 1x10−4 (ER) and -0.0008 (Γ/2) hartree. Inter-

estingly, for the largest aug-cc-pVQZ+[3s3p] basis, there is no well-defined stationary

117



point: the minimal value of the dE
dθ

along the trajectory is 4.5x10−3 hartree/rad and is

more than twice greater that for other bases. The effect of the valence basis set is even

more pronounced in the case of doubly excited resonance state in H− (Fig. S4, supple-

mentary materials for Ref. 51). Dunning’s aug-cc-pVTZ and aug-cc-pVQZ augmented

with 3s3p diffuse functions result in similar trajectories, which differ strongly from the

6-311(+,+)G(d,p)+[3s3p] one. Therefore, more flexible diffuse aug-cc-pVNZ bases per-

form better than the corresponding Pople’s ones. Note, however, that the trajectories are

plotted for α=1 (α = e−θIm), which is not necessarily an optimal value, and therefore the

cusp conditions do not hold in this case. Trajectories with pronounced cusp features can

be obtained by varying α, which is illustrated by the θ-trajectories for the 2s2 resonance

of He shown in Fig. S5 in supplementary material for Ref. 51.

Figure 4.7: θ-trajectories for the 2s2 Feshbach resonance in He. Angle θ varies
from 0 to 0.500 radian (step 0.025 rad).

As mentioned above, the complex-scaling transformation of the H̄ matrix changes

bound-states wave functions. To analyze the ability of basis sets to describe this wave

function transformation, we considered aug-cc-pVTZ+[10s5p5d] and its fully uncon-

tracted counterpart. The resulting trajectories for the ground state and 2s2 resonance
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of He are shown in Fig. S6 (supplementary material for Ref. 51). As expected, uncon-

tracting the basis makes the ground state trajectory more compact, i.e., the ground state

approaches stationary condition, and the basis set approaches convergence. As uncon-

tracted s-type basis functions are compact and do not contribute significantly to the

description of the diffuse 2s2 state, uncontraction of the basis has only a minor effect on

the resonance state.

The character of the resonance wave function

To rationalize the effects of basis sets, we focus on the changes in the wave function

character upon complex-scaling. Below we characterize the ground and 2s2 states of

He by analyzing the electronic densities, < R2 > expectation values and wave function

expansion in terms of valence or diffuse excitation for the case of unscaled (θ = 0) and

scaled (θ = 0.200) H̄. The electronic densities for the He ground and 2s2 resonance

states are shown in Fig. 4.8. The densities are computed from the unrelaxed EOM-EE-

CCSD one particle density matrix:

γpq =< 0|e−T L|p+q|ReT |0 > (4.18)

For θ = 0, the electronic densities are real (Fig. 4.8). The ground-state density almost

coincides with the square of the He 1s orbital. The resonance state density has proper

nodal structure consistent with the squared 2s orbital. Complex scaling transforms elec-

tronic density into a complex-valued functione of coordinates (Fig. 4.8). As one can

eThe discussion of the physical interpretation of the complex electronic density for resonances can be
found in Refs. 19,78,79. Barkay and Moiseyev78 showed that the phase of the complex density probability
is related to the resonant tunneling probability78.
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Figure 4.8: cs-EOM-EE-CCSD/aug-cc-pVTZ+[3s3p] electronic densities for the
ground state (top) and 2s2 resonance (bottom) of He atom plotted in regular (left)
and logarithmic (right) scale. Densities for θ=0 and θ=0.200 (real and imaginary
parts, and the absolute value) are shown.

see, the real part of the ground state density resembles that for θ = 0, whereas the imag-

inary part has more pronounced oscillatory behavior consistent with the wave function

transformation discussed above. We observe similar patterns for the electronic density

of the resonance state. The real part resembles that of the resonance state for θ=0 , and

the imaginary part has more oscillating character. Overall, the changes in the electron

density are small and are similar in magnitude to changes in hydrogenic 1s functions in

the same range of θ (see supplementary material for Ref. 51, Fig. S7).
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As complex-scaling make resonance to appear as a single L2-integrable eigen-state

of the complex-scaled Hamiltonian, one may expect that the wave function becomes

more compact upon complex-scaling transformation. This is confirmed by the analysis

of R2 expectation values. < R2 > for the ground and 2s2 states of He for θ=0 is 2.40

and 25.96 Å2, whereas for θ=0.200 the corresponding values are 2.40 and 25.92 Å2.

Therefore, the resonance wave function becomes slightly more compact, although the

R2 changes are not dramatic due to the dominant contribution of valence excitations to

the wave function, which is discussed below.

To quantify contributions of excitations to the pseudo-continuum orbitals to the

resonance wave function we divided all doubly-excited configurations into three groups:

excitations to the orbitals with
〈
R2〉 < 100 Å2 (valence),

〈
R2〉 ≥ 100 Å2 (diffuse), and

mixed excitations. The decomposition of the wave functions into the contributions

from each of these groups for θ=0.200 is shown in Fig. 4.9A for the three different

basis sets: aug-cc-pVTZ augmented by 3s, 3s3p, and 3s3p3d diffuse sets. The 3s3p

and 3s3p3d sets result in qualitatively the same character of the wave functions, which

differ significantly from that for the 3s basis. Note that the purely diffuse contributions

decrease upon transition from 3s to 3s3p and 3s3p3d. In addition, the contribution of

mixed excitations is reduced thus increasing the valence character of the resonance

state. This can be rationalized as follows. In the absence of higher angular momentum

basis functions electron repulsion can only be mitigated by electrons avoiding each

other in a radial dimension (“one in, one out”, radial electron correlation) which results

in an increased diffuseness of the wave function. Adding higher angular momentum

functions allows electrons to avoid each other via correlated angular motions (angular

electron correlation) leading to a more compact resonance statef. In agreement with

fWhen electrons cannot avoid each other angularly, they try to do it radially which results in a more
diffuse wave function.
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Figure 4.9: Decomposition of the He 2s2 resonance wave function into the excita-
tions to diffuse orbitals (< R2 >> 100 Å2, shown in blue), valence orbitals (< R2 ><
100 Å2, shown in red), and mixed double excitations (green) for (A) aug-cc-pVTZ
basis augmented with 3s, 3s3p and 3s3p3d diffuse subsets; θ=0.250; and for (B)
θ = θopt = 0.200 and θ = 0; aug-cc-pVTZ/3s3p3d basis set is used. Absolute values
of amplitudes are used for the analysis.

a slightly decreased < R2 > for the resonance wave function for the complex-scaled
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Hamiltonian (θ=0.200) relative to the wave function of the original unscaled Hamilto-

nian, the contribution of the excitations to the diffuse orbitals also decreases (Fig. 4.9B).

As one can see from Fig. 4.8 and Fig. S7 of supplementary material in Ref. 51, there

is no visually pronounced effect of the complex scaling on the one-particle electronic

density for moderate values of the complex-scaling parameter, θ. However, the ener-

gies of both the ground and resonance states do depend on θ-dependence giving rise

to θ-trajectories. To better understand the connection of energy θ-dependence to the

changes of the wave function, and consequently electronic density, we performed the

following energy decomposition analysis. The energy of a state can be decomposed into

the contributions from one-electron and two-electron operators in the following form:

E = Tr[γh]+Tr[ΓII] (4.19)

where γ and Γ are one- and two-particle density matrices, respectively, and h and II are

the one-electron Hamiltonian matrix and two-electron integral tensor. Upon complex-

scaling transformation the θ-dependent energy assumes the following form:

Eθ = e−2iθTr[γθT ]+ e−iθTr[γθVNe]+ e−iθTr[ΓθI] (4.20)

where γθ and Γθ are one- and two-particle density matrices corresponding to the

complex-scaled wave function. The results of the analysis performed for the aug-

cc-pVTZ+[3s3p3d] basis for the He ground and resonance (2s2) states are shown in

Fig. 4.10.
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As the Feshbach resonance state decay is a two-electron process, one may expect that

the stationary point on the θ-trajectory which defines resonance lifetime is due to two-

electron part of the energy decomposition [Eq. (4.20)]. In contrast, the θ-dependence of

the ground state energy can be both due to correlation effects via two-electron part and

one-electron part as complex-scaling affects the wave function. This is indeed confirmed

by Fig. 4.10.

As illustrated by Fig. 4.10 (top), both the kinetic energy (Tr[γθT ]) and electron-

nucleus attraction (Tr[γθVNe]) contributions to the total energy of the ground state

depend strongly on θ, the changes in the real and imaginary part of energy are as large

as ∼0.5-1.5 a.u. Importantly, the θ-dependence of these terms is solely due to the θ-

dependence of the density matrix, γθ. Therefore, energy decomposition allows one

to trace the origin of the trajectory θ-dependence to the density matrix changes upon

variations of θ. Proper scaling of kinetic energy and electron-nucleus attraction terms

by e−2iθ and by e−iθ, respectively, decreases the θ-dependence by an order of mag-

nitude. Moreover, summing up the two contribution results in partial cancellation of

θ-dependence, and the total one-electron part of the energy only varies within ∼ 0.01

a.u. for the real and imaginary parts. Interestingly, the shape of the resulting trajectory is

similar to that of the total energy. Thus, the main cause of the total energy θ-dependence

of the ground state is due to the θ-dependence of the one-electron density matrix.

The situation is quite different for the resonance state. Similar to the ground state,

the kinetic energy and electron-nucleus attraction contributions notably depend on θ.

Scaling T and VNe parts by e−2iθ and by e−iθ, respectively, results in more stable (i.e.,

constant) energies with respect to the θ variations. The changes in e−2iθTr[γθT ] and

e−iθTr[γθVNe] are of the opposite sign and partially cancel out upon summation of the

two terms. Note that, in contrast to the ground state, the trajectory for the one-electron
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energy differs considerably from the total energy trajectory. This is because the reso-

nance state decay resulting in non-zero imaginary part of the total energy (in a complete

basis set limit) is a two-electron process.

4.3.2 Many-electrons systems: Be atom

As an example of many-electron system, we consider doubly-excited 2p3s resonance

in Be. We employ spd uncontracted basis sets derived from the basis optimized for

electron-attached resonance states in Be80 and used in calculations of the 2p3s resonance

of Be45. The exponents of basis functions are given in supplementary material for Ref.

51.

We begin by considering cs-EOM-EE-CCSD based on the non-complex-scaled HF

and CCSD. In this case, EOM-EE-CCSD results for many-electron atoms will depend

on the specific choice of the reference orbitals and amplitudes T .

Note that the cs-EOM-EE-CCSD θ-trajectories are plotted for the total energy of

the excited state, Ei = ωi + 〈0| H̄θ |0〉, where ωi is an eigen-value of the complex-scaled

H̄θ
N and 〈0| H̄θ |0〉 is an expectation value of H̄θ for the non-complex-scaled HF refer-

ence, |0〉. If the θ-trajectories are plotted for the excitation energies instead, the cusp

feature may be masked by the evolution of the ground state energy and no stationary

point may be observed. This was also mentioned in the context of cs-MCTDHF (multi-

configurational time-dependent HF) theory where no cusps were found on excitation

energies θ-trajectories and well-defined cusps were only observed for the total energy

trajectories45.

The θ-trajectories for the 15 lowest 1P states are shown in Fig. S9A in supplementary

material for Ref. 51. One can immediately see that the computed trajectories do not

follow the Balslev-Combes theorem; they are shifted by 1.5 hartree to the upper complex
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plane as θ changes from 0 to 0.475. The origin of this behavior can be traced to the non-

complex-scaled HF reference. The latter is not a variational mean-field solution for H̄θ.

The changes of 〈0| H̄θ |0〉 and 〈0|Hθ |0〉 along the θ-trajectory (θ varies from 0 to 0.475)

are illustrated in Fig. S9B. One can see that upon the θ increase the imaginary part of

〈0| H̄θ |0〉 rises steeply by up to 1.5 hartree. Comparison of the trajectories reveals that

all 15 eigenvalues are dominated by the 〈0| H̄θ |0〉 expectation value beginning from

relatively low values of the complex-scaling parameter. This is due to the fact that the

conventional HF solution is no longer a good reference for the cs-EOM-EE-CCSD H̄θ

solutionsg.

This numeric result illustrates that complex-scaled HF and/or complex-scaled CCSD

that can account for orbital relaxation via T1 operator, should be used for proper descrip-

tion of resonance states in many-electron systems. Indeed, when fully complex-scaled

calculation is performed, the solutions of cs-EOM-EE-CCSD behaves in accordance to

the Balslev-Combes theorem, as illustrated in Figs. 4.11 and S10-S16. We note that

as long as complex-scaling is engaged at the CCSD level, the shape of the trajectories

is not very sensitive to the underlying HF reference, as one can see from Fig. 4.11.

This is because coupled-cluster ansatz is rather orbital insensitive owing to the ability of

exp(T1) to describe orbital relaxation.

gThe EOM-EE-CCSD energies are invariant with respect to the occupied-occupied and virtual-virtual
orbital rotations. Moreover, their dependence on occupied-virtual rotations is relatively weak, because
orbital relaxation is approximately accounted for by T1. In the implementation of cs-EOM-EE-CCSD
in which both HF and CCSD calculations are performed for the unscaled Hamiltonian and scaling is
introduced only at the EOM stage, the T1 operator does not account for proper orbital relaxation and the
results become sensitive to the reference choice.
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Figure 4.10: Energy decomposition analysis for the ground state (top) and 2s2 res-
onance (bottom) of He. CS-EOM-EE-CCSD/aug-cc-pVTZ+[3s3p3d].
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Figure 4.11: θ-trajectories for the 1s22p3s resonance in Be computed with cs-EOM-
EE-CCSD/cs-CCSD/cs-HF and cs-EOM-EE-CCSD/cs-CCSD/HF using the 14s11p
basis set.

Table 4.4 summarizes the computed values of the position and width of the 2p3s res-

onance. The cs-EOM-EE-CCSD/cs-CCSD/cs-HF calculation with the 14s14p5d basis

and using frozen core yields 10.92 and 0.465 eV for the resonance position and width,

respectively. The values are in good agreement with the experimental values (∆E=10.89

eV and Γ=0.531 eV). Full cs-EOM-EE-CCSD results (with all electrons active) are close

to the frozen core approximation, as validated for 14s11p basis for which the values of

resonance position and width computed with and without frozen core approximation

differ by less than 0.1 eV. Detailed study of the basis set effects in the framework of

cs-EOM-EE-CCSD calculations of many-electron atomic resonances is the subject of

future work.
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4.4 Conclusions

We present the implementation of the complex-scaled EOM-EE-CCSD approach, a

method capable of describing both shape and Feshbach resonances from the first prin-

ciples. As benchmark systems, we considered Feshbach 2s2 resonances in He, H−, and

Be. We investigated the basis set effects on the computed resonance energy and life-

time and analyzed its origin. We found that even moderately diffuse basis sets, e.g.,

aug-cc-pVTZ+[3s3p3d], are sufficient to reproduce the resonance lifetimes with a rea-

sonable accuracy. This result is supported by the analysis of the radial electronic densi-

ties, which exhibit no significant continuum tail even in the case of non-complex-scaled

calculations. As Feshbach resonance decay is a two-electron process, proper treatment

of electron correlation is crucial. We show that one has to use flexible enough bases

which enable proper account for both radial and angular electronic correlation. For

the (2s)2 resonances, inclusion of at least p-type functions is required. Furthermore,

the basis should be sufficiently flexible to describe changes in the wave function along

θ-trajectory. That is why simple even-tempered bases show better performance than

highly-optimized (for θ = 0) standard basis sets augmented by additional diffuse sets.

Benchmark calculations on many-electron systems (Be) point to the importance of

using complex-scaled HF reference and cs-CCSD for reliable description of ground

and resonance states within the complex-scaled post-HF methods. cs-EOM-EE-

CCSD/CCSD/HF yields qualitatively incorrect shapes of the θ-trajectories. Engaging

cs-CCSD partially recovers orbital relaxation via T1 coupled-cluster operator resulting

in an accurate description of the resonance position and width. The most complete
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cs-EOM-EE-CCSD/cs-CCSD/cs-HF method is a preferred approach; it provides quan-

titatively correct description of resonance position and width for Be 2p3s resonance, the

model system of resonances in many-electron atoms.
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Chapter 5: Complex absorbing

potentials within EOM-CC family of

methods: Theory, implementation, and

benchmarks

5.1 Introduction

Metastable electronic states are important in diverse areas of science and technology

ranging from high-energy applications (plasmas, attosecond and X-ray spectroscopies)

to electron-molecule collisions (interstellar chemistry, radiolysis, DNA damage by slow

electrons). These states (called resonances) can be accessed when molecules are excited

above their ionization threshold, via electron attachment to closed-shell species, or by

core ionization.

A concise and pedagogical introduction to the topic as well as references to earlier

reviews can be found in Ref. 1. From the quantum mechanical point of view, resonance

states belong to the continuum part of the spectrum and, therefore, their wave functions

are not L2-integrable. Yet, their wave functions bear certain resemblance to the bound

states within the interaction region (i.e., close to the nuclei). Using boundary conditions
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for the outgoing wave (Siegert or Gamow formalism, see Ref. 1), one arrives at the

following form of the resonance wave function:

Ψ(x, t) = e−iEt
φR(x) = e−Γt/2e−iERt

φR(x) (5.1)

where the phase-isolated part φR(x) resembles a bound-state wave function in the

interaction region and ER and Γ (real and imaginary parts of the complex energy

E = ER− iΓ/2) determine resonance position and width. The latter is inversely pro-

portional to the resonance lifetime. Thus, the resonances appear as solutions of the

Schrödinger equation with complex energy1–4. One can arrive at the same concept of

complex energy via a completely different formalism (Feshbach approach) based on a

separation of the Hamiltonian into coupled bound and continuum parts; in this approach,

the resonance is described as a bound state coupled with the continuum, and the complex

energy emerges from solving a non-Hermitian eigenproblem with an effective Hamilto-

nian5.

One can avoid the inconveniences of working with continuum functions or fiddling

with boundary conditions by reformulating the problem using complex variables2–4. The

most rigorous approach is the complex-scaling formalism2, 6 in which all coordinates

are scaled by a complex number e−iθ; however, practical applications of this method

are limited by its extreme sensitivity to the one-electron basis set7–11 as well as concep-

tual difficulties regarding the separation of nuclear and electronic motions of the scaled

Hamiltonian12–15.

These problems are avoided in an alternative approach in which the original (non-

scaled) Hamiltonian is augmented by a complex potential −iηŴ devised to absorb the

diverging tail of the resonance wave function16–18. In the complete basis set limit, these

complex absorbing potential (CAP) methods yield exact resonance positions and widths
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in the limit of zero CAP strength η19. Also, CAP methods are related to exterior com-

plex scaling methods20, 21.

The use of CAPs in practical calculations is complicated by possible reflections

leading to false resonances, sensitivity of the results to the form of the CAP W , and

a strong basis set dependence19, 22. Furthermore, one has to determine an optimal

value for η, which is usually achieved by calculating trajectories E(η) and requiring

|ηdE/dη|= min.

In more familiar terms, reflections can be described as perturbations of the resonance

wave functions and, consequently, energies caused by a finite-strength CAP. Finite

basis sets give rise to additional reflections. In our previous paper23, we introduced a

simple density-matrix based correction to the energy that removes the perturbation due

to the CAP. The correction was derived based on energy decomposition analysis and

response theory. By analyzing the response equations, we also proposed an alternative

criterion for finding an optimal value for η. Physically, our approach is grounded in

the behavior of the resonance wave function and, ultimately, the one-particle density

matrix. It was shown23 that when the CAP is sufficiently strong, both real and imaginary

parts of the density become near-stationary indicating that the resonance is stabilized.

Then the perturbation to the resonance position by the CAP can be eliminated by

subtracting the term ηTr[γW ] from the energy. The optimal η is found by considering

the de-perturbed resonance energies; moreover, we argued that ηopt is not the same

for real and imaginary parts23. Preliminary benchmarks illustrated that this approach

results in a computationally more robust scheme in which the dependence on the onset

of the CAP is significantly reduced compared to the straightforward application of a

CAP along with the original energy-based criterion for finding the optimal η, as was
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done in most CAP applications24–26.

One of the difficulties of understanding the capabilities and limitations of different

approaches is that a method that has shown excellent performance for a small model

problem may fail when applied to a realistic system. In the context of electronic struc-

ture, the results of calculations of resonances will also be affected by the quality of

standard approximations such as the incompleteness of one- and many-electron basis

sets27. Thus, it is important to test different methods for meta-stable states within

robust and accurate ab initio approaches. For bound states, the coupled-cluster (CC) and

equation-of-motion (EOM) hierarchies of methods28–32 provide a reliable and predictive

set of theoretical model chemistries33. These methods can be systematically improved

to approach the exact solution, are size-extensive (or size-intensive for excitation ener-

gies), describe dynamical and non-dynamical correlation in one computational step, and

do not involve system-dependent parameterization. The CC hierarchy of methods works

best for wave functions dominated by a single Slater determinant, however, the EOM-

CC approach extends this single-reference formalism to tackle various open-shell and

multi-configurational cases30, 34.

In EOM-CC the target-state wave function is described by an excitation operator R̂

acting on the reference-state CC wave function:

|Ψ〉= R̂eT̂ |0〉 (5.2)

with |0〉 as the reference Slater determinant (usually satisfying the HF equations) and

T̂ as the coupled-cluster operator. Different choices of R̂ provide access to different

target states, e.g., in EOM-EE-CC R̂ is electron and spin-conserving thus enabling the
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description of various excited states. Open-shell electron-attached states (such as tem-

porary anions) can be described by EOM-EA-CC in which the reference state is again

a well-behaved closed shell state and the operator R̂ changes the number of electrons.

Likewise, ionized states can be described by EOM-IP-CC with the operator R̂ removing

an electron. Thus, EOM-CC is a natural choice for extending the excited-state method-

ology to resonances via complex scaling and CAP approaches.

Recently, we presented an implementation of complex-scaled EOM-CCSD methods

and illustrated their performance by considering several atomic systems (He, H−, Be).

Here we present an implementation of CAPs within the EOM-CCSD family of meth-

ods. Our main focus is on the EOM-EA-CC variant; however, our implementation also

includes EOM-EE-CC. While limited implementations of CAPs within EOM-CC have

been reported before (e.g., Refs. 24, 25), this work presents the first formally complete

and production-level implementation of the method.

The main focus of the paper is on investigating the numeric performance of the

method and the sensitivity of the results towards the CAP parameters and the choice of

basis set. Our goal is to develop a black-box type approach that could be calibrated and

then applied to the calculation of resonances without any prior knowledge of the system,

as advocated by John Pople33. In particular, we want to avoid the system-dependent

optimization of basis sets and the CAP’s shape and onset. Thus, rather than aiming

at results converged with respect to all computational parameters individually for each

system, we wish to establish a uniform protocol that can be applied to any system and

can be characterized by error bars estimated from prior calibration studies, as routinely

performed in electronic structure calculations27.
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We note that the validation of the accuracy of computed resonance lifetimes in

molecular systems is difficult35. A complete theoretical description should involve cou-

pled electronic and nuclear dynamics; this is beyond the scope of the present paper,

where we only compute the lifetime of the resonance state at a fixed molecular geome-

try. This is appropriate for resonances whose lifetimes are shorter than nuclear motions,

or when nuclear motions do not strongly affect the computed Γ values (Condon-like

approximation). Thus, our focus is on the comparison with other theoretical studies and

the robustness of the results with respect to the one-electron basis set as well as small

variations of the CAP parameters.

In this context, we add that the sensitivity of the results towards the one-electron

basis set is of a fundamentally different origin in CAP calculations as compared to com-

plex scaling. In the latter case, the basis should be sufficiently flexible to describe the

resonance wave function at different values of the scaling angle, whereas in the for-

mer case, one simply needs to supply a basis set of sufficient spatial extent to represent

a given CAP and a stabilized resonance wave function. This implies that the diffuse-

ness of the basis must be coordinated with the CAP onset, e.g., in a compact basis, the

CAP onset should be smaller, otherwise, the calculation will be blind to the CAP. Thus,

although the basis-set dependence is a nuisance, its simpler nature in CAP calculations

suggests that a solution can be found.

Originally CAP methods were introduced to study shape resonances. Since the

decay of Feshbach resonances is a two-electron process (and the CAP is a one-electron

operator), one may expect difficulties in describing Feshbach resonances within the CAP

formalism. Moiseyev et al.36–38 showed that additional steps need to be taken for the
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construction of reflection-free CAPs in order to reliably calculate Feshbach-type res-

onances. The present paper focuses solely on understanding CAPs in the context of

molecular shape resonances.

The article is structured as follows: Sections 5.2 and 5.3 present the formalism of

CAP-augmented EOM-CC calculations and our implementation. In Section 5.4, we

put forward a protocol to determine resonance positions and lifetimes and investigate

its robustness towards the choice of the one-electron basis set and the CAP’s onset. In

Section 5.5, we subsequently apply our new scheme to a variety of molecular resonance

states and compare the results to those obtained from experiment as well as using other

theoretical approaches. Section 5.6 provides concluding remarks.

5.2 Theory

The basic idea of the CAP method16–19 is the addition of an artificial complex potential

to the original Hamiltonian:

H(η) = H− iηW (5.3)

where W aims to absorbs an outgoing electron and η controls its strength. As in complex

scaling2–4, 11, 39, the addition of the CAP results in a non-Hermitian complex symmetric

operator H(η)16 converting resonances into square-integrable (L2) wave functions. In

our calculations we choose as CAP a quadratic potential with an unaffected region of

cuboid (i.e., box) shape:

W = Wx +Wy +Wz (5.4)

Wα = 0 if |rα|< r0
α (5.5)

= (rα− r0
α)2 if |rα|> r0

α
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with rα denoting the three Cartesian coordinates (α = x,y,z). Thus, the CAP is con-

trolled by 4 parameters: 3 parameters for the onset in each direction (r0
x , r0

y , r0
z ) and the

strength η. In principle, the CAP strength is unbound (η ∈ [0,∞)), but should be chosen

such that the effect is large enough to absorb the wave function over a certain range, but

not too large to prevent excessive perturbation of the wave function and the resonance

energy19.

In the complete one-electron basis set, the exact position of the resonance in the

complex plane can be obtained as limη→0 E(η)16. That is, an infinitesimally weak CAP,

which is represented exactly (and, therefore, goes to infinity at large r), is sufficient to

stabilize the resonance without perturbing it. Working with finite Gaussian basis sets

requires one to perform series of calculations for different η in order to find an opti-

mal value of the strength parameter ηopt along the η-trajectory and the corresponding

value of the resonance energy E(ηopt). A commonly used criterion for determining the

optimal value of the strength parameter η is finding the minimum of the logarithmic

velocity16, 19:

v(η) = |η∂E(η)
∂η
| (5.6)

Unfortunately, the position of the resonance computed using this criterion is very

sensitive to the CAP onset17, 23, 26 and thus does not provide a black-box approach. In our

recent paper23, the first-order deperturbative correction to the raw resonance energies

was introduced as:

UR(η) = ER(η)−ηTr[γI(η)W ] (5.7)

U I(η) = EI(η)+ηTr[γR(η)W ] (5.8)

with γ(η) as the one-particle density matrix.
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By looking separately at the real and imaginary parts of the deperturbed energy as a

function of η, we showed that the energy becomes near stationary at certain values of

optimal strength (ηR
opt and ηI

opt) giving the position and lifetime of the resonance. Our

results showed that this recipe leads to values for the resonance position and lifetime

which are less sensitive to the CAP onset and thus more robust than the raw values23.

In our method the CAP is introduced at the HF level of theory, where we obtain a

set of complex molecular orbitals (MOs) as the solution for a given strength η. As the

next step we solve the CCSD equations for the ground state28, 29, 40–42 using H(η):

(Φµ|e−T H(η)eT |Φ0) = (Φµ|H̄(η)|Φ0) = 0 (5.9)

with Φµ denoting the excited determinants. The resulting amplitudes tη are also com-

plex.

To compute electronically excited and electron-attached resonance states we use

EOM-EE-CCSD and EOM-EA-CCSD30, 43–47 methods that provide accurate and pre-

dictive descriptions for such target states. The wave function of the resonance state is

found by solving a non-Hermitian eigenvalue problem for the right eigenvectors:

(Φµ|(H̄(η)−Eη
cc)R

η|Φ0) = Rη
µ Ω

η (5.10)

which yields a set of complex amplitudes Rη, and complex excitation energies Ωη. The

latter are the raw, η-dependent resonance energies (which are equal to the difference

between the total energy of the excited/attached EOM-CCSD state and the reference

CCSD energy for a given η).
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We note that for moderate CAP strengths and CAP onsets comparable with the spa-

tial extent of the electron density of the reference state, the perturbation to the ground-

state CCSD energy is small (10−5 a.u.) in contrast to complex-scaled calculations11. To

compute the first-order correction to the raw resonance energies, the one-electron den-

sity matrix needs to be calculated. We employ an unrelaxed one-electron EOM-CCSD

density matrix containing no amplitude or orbital-response terms48:

γpq(η) =
1
2

(0|Lηe−T η

{p+q+q+p}eT η

Rη|0) (5.11)

where Lη and Rη are the left and right EOM-CCSD eigenvectors, respectively.

Because of the non-Hermitian nature of H̄ left eigenvectors have to be computed and

biorthogonalized against the right eigenvectors in order to compute the density matrix:

(Φ0|Lη(H̄(η)−Eη
cc)|Φµ) = Ω

ηLη
µ , (5.12)

(Li|R j) = δi j , (5.13)

where i and j denote different electronic states. Once the density matrix is computed,

the energy of the resonance state is corrected according to Eqs. (5.7) and (5.8).

The equations for CAP-CCSD and CAP-EOM-EE/EA-CCSD are identical to the

original CCSD and EOM-EE/EA-CCSD equations except that all the input quantities

such as the Fock matrix, the two-electron integrals, the MO matrix C, the T and R/L

amplitudes are now complex and η-dependent. There is no need to add the CAP explic-

itly to the CCSD or EOM-CCSD equations since it is already included at the HF level.

In our paper on complex-scaled EOM-CC11, we considered several variants of

implementation, including the one in which the HF and CCSD equations for the ref-

erence state were solved for the unscaled Hamiltonian and the scaling was introduced
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only at the EOM-CC level. This required significant reformulation of the EOM-CC

equations. By analogy, one may also consider an implementation of CAP-EOM-CC in

which the CAP is introduced only at the EOM-CC level; this will be the subject of future

work.

Due to the CAP, the Hamiltonian becomes non-Hermitian and complex symmet-

ric, which necessitates using a different metric, the so-called complex symmetric scalar

product (c-product)16, 39, 49, 50, such that the variational principle is maintained:

(ψi|ψ j) =
Z

ψiψ jdr (5.14)

The difference to the regular scalar product is that the bra-vector is not complex conju-

gated. Mathematically, the c-product is a pseudoscalar product which does not induce a

valid metric norm39, 49. However one can still define the c-norm ( f | f ) which is, contrary

to the regular norm, complex in general and might become zero for a non-zero function

f (“self-orthogonality”):

( f | f ) =< fre| fre >−< fim| fim > +2i < fre| fim >= |a|eiφ ∈ C (5.15)

where < | > is a regular scalar product which is equivalent to the c-product for real

functions. Thus, the normalization of all vectors (for example left and right EOM-CC

eigenvectors) is done by multiplying by a complex number39:

f̂ = |a|−
1
2 e−iφ/2 f (5.16)

resulting in f̂ being a normalized vector. As mentioned above, use of the c-norm may

lead to “self-orthonormality” (( f | f ) = 0 for f 6=~0), but this has not been observed in
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practice. Orthogonality is defined for the c-product in the same manner as for scalar

product as ( f |g) = 0 (c-orthogonality).

5.3 Implementation

The suite of CAP-EOM-CC methods has been implemented in the Q-Chem electronic

structure package51, 52 and will be available to users in the upcoming 4.2 release. For

all complex CCSD and EOM-EE/EA-CCSD equations the libtensor library53 for high-

performance tensor operations has been used.

The calculations begin by solving the CAP-augmented restricted Hartree-Fock equa-

tions (CAP-RHF). CAP-RHF has been implemented as an extension to regular RHF

using the object-oriented SCF library SCFman in Q-Chem that employs the Armadillo

linear algebra library54 for matrix computations. We add that an adaptation of our

implementation for CAP-UHF will be straightforward. The CAP is introduced as an

additional term in the regular Fock matrix:

Fη

µν = F0
µν− iηWµν (5.17)

The molecular orbitals must satisfy the following orthonormalization condition in the

c-product metric:

(Cη)T SCη = I (5.18)

where S is the overlap matrix in the atomic orbital (AO) basis and (Cη)T is transposed

but not conjugated. Since the augmented Fock matrix Fη is non-Hermitian, the orbitals

obtained using standard linear algebra routines for the diagonalization of general matri-

ces are not normalized. In order to satisfy orthogonality condition (Eq. 5.18), the MOs
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are orthogonalized by using a modified Gram-Schmidt procedure with projections cal-

culated using the c-product.

The Fock matrix Fη

µν and the two-electron integrals (µν|λσ) are transformed into

the MO basis by applying the complex orbital transformation matrix, Cη
µp; thus, these

quantities become complex in the MO basis. The calculations proceed by solving the

CCSD amplitude equations using a DIIS procedure55 adapted for complex algebra with

c-product. Once the complex t-amplitudes are converged, we find the excited-state

energies and right eigenvectors by using Davidson’s procedure56 generalized for non-

Hermitian complex matrices. Note that the original H̄ matrix is also non-Hermitian

but real, thus, one only needs to modify the procedure to make it work with complex

quantities and the c-product. We observe that for large values of η the convergence of

Davidson’s procedure is sometimes problematic, likely due to more pronounced non-

Hermiticity. However, we were always able to converge a reasonable number of roots

(2-10) by tweaking the parameters of Davidson’s procedure such as subspace size, resid-

ual inclusion threshold, etc. Since the one-electron density matrix is needed for the

calculation of the first-order correction to the energies, we also solve for the left eigen-

vectors using Davidson’s procedure, as well as for left and right eigenvectors together

to ensure their c-biorthogonality [Eq. (5.13)].

The CAP is evaluated in the AO basis through numerical quadrature using a Becke-

type grid57 of (99, 590) points (99 radial points and 590 angular points per radial point).

Currently, we have implemented a shifted quadratic potential (r− r0)2 for a rectangular

cuboid [Eqs. (5.4) and (5.5)], but our implementation allows for an easy extension of the

shape of the unaffected region as well as the type of potential, e.g., higher order mono-

mials (r− r0)4, (r− r0)6, etc. Our implementation also includes the optional addition of

a real potential to the CAP, as was advocated in Ref. 38.

151



Relative to the conventional CCSD and EOM-CCSD methods, the addition of the

CAP does not change the scaling of the computational cost [O(N6) for CCSD and EOM-

EE-CCSD, O(N5) for EOM-EA-CCSD] or the memory requirements [O(N4)]. How-

ever, because we need to work with complex numbers, the computational cost increases

roughly by a factor of 4 and the storage requirements increase by a factor of 2. Fur-

thermore, computation of the first-order energy correction requires the left eigenvec-

tors, which increases the computation time relative to EOM-CCSD energy calculations.

Another possible issue arises when the resonance state is lying high in energy, so that

the Davidson procedure will need to find all lower roots and it might require a lot of

iterations to converge. To solve this issue, we have implemented iterative solvers for

interior eigenstates for conventional EOM-CCSD methods. Implementation of the inte-

rior eigenvalue solvers for CAP-EOM methods is a subject of future work. Finally, the

necessity to compute η-trajectories requires to run calculations for different values of

η, but these calculations can be performed independently and can therefore be run in

parallel.

5.4 Benchmark calculations

The necessity to find optimal values for the strength and the onset of the CAP as well

as a pronounced basis set dependence of the results have prevented routine applications

of CAP-based methods so far. Hence, investigating the numeric performance of CAP-

EOM-CCSD, in particular with respect to the two aforementioned issues, is crucial for

it to become a useful tool for studying resonances.

As for the one-electron basis set, it has been established that the straightforward

application of standard basis sets yields poor results. Additional diffuse functions need
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to be incorporated for two reasons: (i) to obtain a sufficiently good basis-set represen-

tation of the CAP and (ii) to describe the outgoing electron correctly16, 19, 58. Owing to

these requirements, CAP-based computations were often carried out using non-standard

basis sets25, 26, 58–63. While such approaches are able to provide results that agree with

experiment for some resonance states, a treatment based on standard basis sets not

involving any optimization procedure would be superior as it is of black-box type, has

predictive power, and is also computationally less demanding. Since the shape of the

resonance wave function is similar to a bound-state wave function in the interaction

region, it should be possible to lessen the basis-set dependence to the degree observed

in regular EOM-CCSD calculations.

Concerning the choice of the CAP onset, one has to realize that the artificial nature

of the CAP implies that it is impossible to deduce from basic physical laws a universally

applicable procedure for finding optimal parameters for the CAP strength, onset, and

shape. While this is unsatisfying from a formal point of view, a pragmatic approach is

to mitigate the dependence of the physically meaningful results on the artificial param-

eters as much as possible. Along these lines, we introduced a first-order correction23

that was shown to desensitize resonance positions and widths to the choice of onset

parameters by removing the perturbation due to the CAP. However, as this dependence

cannot be removed completely, one has to develop a protocol for the unique and system-

independent choice of the CAP onset to make CAP-EOM-CCSD applicable in a routine

manner.

5.4.1 Computational Details

In the following we examine the π∗ shape resonances of CO− and C2H−4 using different

basis sets and CAP onsets. Both states arise from adding an electron to the lowest
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unoccupied valence MO (LUMO) of the respective neutral molecule. Bond lengths

and angles were chosen as R(CO) = 2.1316 a.u. for carbon monoxide and R(CC) =

2.5303 a.u., R(CH) = 2.0522 a.u., and ∠(CCH) = 121.2◦ for ethylene. All electrons

were active in the correlation treatment. The CAP strength η was varied with a step size

between 0.0001 a.u. and 0.001 a.u. Optimal values for η were determined according

to the criterion from Eq. (5.6) as well as using the procedure outlined in Ref. 23. The

respective results are referred to as zeroth-order and first-order in all tables and in the

discussion below.

The basis sets used in our calculations were derived from the aug-cc-pVXZ (X = D,

T, Q, 5) series64 through augmentation by additional even-tempered basis functions. In

all cases, the exponents for the first additional basis functions were obtained as one half

of the exponent of the most diffuse basis function with the same angular momentum

in the parent aug-cc-pVXZ basis set. The exponents for the remaining additional basis

functions were calculated as one half of the exponent of the preceding function.

We explored two different series of basis sets, namely one where we augmented

the basis sets for all atoms except for hydrogen (denoted as (A) below) and one where

we placed only one set of diffuse functions with averaged exponents in the center of

the molecule (denoted as (C) below). Since the second approach is computationally

less demanding, it is especially preferable when targeting larger systems. To ensure

that this strategy does not give rise to artifacts, we computed EOM-EE-CCSD exci-

tation energies for a number of bound excited states of CO and C2H4 using the aug-

cc-pVTZ+3s3p3d(C) and aug-cc-pVTZ+3s3p3d(A) bases. The results are reported in

Table 5.4.1 together with the corresponding values for 〈R2〉, which are helpful in dis-

tinguishing valence states from Rydberg states. As apparent from Table 5.4.1 excitation

energies based on the two basis sets differ by not more than 0.04 eV for the very diffuse
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4 1A1 state of CO and by just 0.001 eV for all other states considered. This shows that

placing the additional diffuse functions in the center does not lead to inferior results for

the bound excited states and thus suggests the application of this scheme to resonances.

We note that a similar scheme has been employed before in the context of stabilization

techniques65, 66.

Table 5.1: EOM-EE-CCSD excitation energies and expectation values 〈R2〉 for sev-
eral excited states of CO and C2H4 computed using the aug-cc-pVTZ basis set with
additional diffuse basis functions placed at the all heavy atoms (A) or at the center
of the molecule (C).

aug-cc-pVTZ aug-cc-pVTZ
+ 3s3p3d(A) + 3s3p3d(C)

Molecule State 〈R2〉/a.u.a E/eV E/eV
CO 2 1A1 77.8 10.961 10.961

4 1A1 153.7 12.559 12.597
1 1B2 41.4 8.625 8.626

C2H4 2 1Ag 152.0 8.445 8.446
1 1B1g 116.7 9.791 9.791
1 1B1u 118.7 7.392 7.392

aThe corresponding values for the ground states are 40.0 a.u. for CO and 83.3 a.u. for
C2H4.

As for the choice of the CAP onset, we employed the square roots of the expectation

values 〈α2〉 (α = x,y,z) for the ground states calculated at the CCSD level of theory

as a starting point and considered the impact of small variations. The values used are

r0
x = r0

y = 2.76 a.u. and r0
z = 4.97 a.u. for CO and r0

x = 7.10 a.u., r0
y = 4.65 a.u., and

r0
z = 3.40 a.u. for C2H4. The orientation of the molecules was chosen as follows: For

CO the z-axis formed the molecular axis, whereas the C2H4 molecule was placed in the

xy-plane with the CC bond oriented along the x-axis.
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5.4.2 The Impact of the CAP Onset

Table 5.2 compiles resonance positions ER and lifetimes Γ for the 2Π resonance of CO−

and the 2B2g resonance of C2H−4 obtained using the aug-cc-pVTZ+3s3p3d(C) basis and

different values for the CAP onset. We started with the aforementioned values for r0
α

based on the spatial extent of the ground-state wave function and then varied r0
x , r0

y ,

and r0
z independently. In addition to ER and Γ, we report optimal CAP strengths as

well as values for the norm of the CAP in the AO representation. As expected, the

representation of the CAP becomes more complete for smaller values of r0
α. In addition,

the results for ||W || show that the onset parameters are not all of the same importance:

Consistent with the π∗ character of the resonance states, r0
z makes the largest impact for

C2H−4 and r0
x = r0

y for CO−. This trend is also reflected in all values for ηopt, ER, and

Γ: Varying the pivotal onset parameter by ±0.5 a.u. shifts zeroth-order values for ER

by up to 0.028 eV and zeroth-order values for Γ by up to 0.048 eV, while the impact

of the remaining onset parameters is roughly one order of magnitude smaller. We will

thus focus on the onset parameter with the most pronounced influence in the remaining

discussion.

Table 5.2 shows that both zeroth-order and first-order resonance positions and widths

become smaller when increasing r0
α, but we emphasize that these fluctuations are miti-

gated, especially for the width when considering first-order results: Here, ER and Γ are

both shifted by at most 0.025 eV upon variation of r0
α. Also, it is apparent from Table 5.2

that smaller values for the CAP onset lead to smaller ηopt and that the first-order correc-

tion always entails larger values for ηopt. However, the relevance of the latter trends is

debatable as the CAP strength η is not a physically meaningful quantity. One can argue

along the same lines regarding the quantity η ·dE/dη that needs to be minimized to find
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the optimal value for η when using the conventional criterion from Eq. (5.6). As can be

seen from Table 5.2, trends in η ·dE/dη are weakly pronounced and not uniform.

5.4.3 The Role of Diffuse Basis Functions

To analyze the convergence of resonance positions and widths with respect to the addi-

tion of diffuse basis functions, we studied the π∗ resonances of CO− and C2H−4 using

different augmentations. All results are summarized in Tables 5.3 and 5.4. The crucial

role of the angular momentum of the additional basis functions becomes clear at the first

glance: In the case of CO−, a jump of almost 0.5 eV is observed for the zeroth-order res-

onance position when going from aug-cc-pVTZ+3s(C) to aug-cc-pVTZ+3s3p(C), while

an additional augmentation by three sets of d-functions leads to a change of 0.06 eV.

Three sets of f-functions on top of aug-cc-pVTZ+3s3p3d(C) shift ER by just 0.007 eV.

For the resonance width, d-functions play a more important role: Going from the 3s(C)

to the 3s3p(C) augmentation changes Γ by 0.08 eV and the next step to 3s3p3d(C)

changes Γ by 0.10 eV, but the value for 3s3p3d3f(C) differs from that for the preceding

augmentation by just 0.004 eV.

For C2H−4 , the changes are in general of similar magnitude as for CO−, but the big

jump is observed when adding d-functions for both ER and Γ. We add that similar trends

are found for the first-order ER and Γ of both resonance states. Also, we note that the

use of basis sets with an augmentation including just s-functions (for CO−) or just s and

p-functions (for C2H−4 ) entails much larger ηopt values and sizable differences between

zeroth-order and first-order values. Finally, the importance of the angular momentum of

the diffuse basis functions is also reflected in the E(η) trajectories for C2H−4 displayed

in Figure 5.1. Their shape is altered considerably when d-functions are added, but is

very insensitive towards the addition of p-functions or f-functions. These findings about
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the role of angular momentum can be easily related to the spatial symmetry of the res-

onance states and thus justify to choose an augmentation scheme based on symmetry

considerations prior to the actual computations. In addition, we note that the values of

||W || show that adding basis functions with angular momentum higher than ` = 2 does

not significantly improve the basis-set representation of the CAP.
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Figure 5.1: Real (right) and imaginary (left) parts of E and U as a function of the
CAP strength parameter η for the 2Πg resonance of C2H4. All values computed by
CAP-EOM-EA-CCSD/aug-cc-pVTZ with different additional diffuse functions. •
refers to zeroth-order values, × to first-order values.

We also investigated the effect of adding more than three additional diffuse s, p, and

d-functions. The corresponding results in Tables 5.3 and 5.4 show that, while values for

||W || become considerably larger indicating a more complete basis-set representation

of W , the impact on resonance positions and widths does not exceed 0.035 eV except

for one case: For C2H−4 , the zeroth-order ER and Γ calculated using the augmentation

schemes 3s3p3d(C) and 6s6p6d(C) differ by more than 0.1 eV. However, this discrep-

ancy disappears when the first-order correction is applied. These results suggest that

an accurate basis-set representation of the CAP near the interaction region is crucial for

obtaining correct resonance positions and widths, whereas regions further away do not

need to be covered by the basis set. Furthermore, since an increased dependence of ER
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and Γ on the CAP onset is found in some cases, we conclude that it is neither necessary

nor advisable to employ more than three additional sets of diffuse basis functions with

the required angular momentum.
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Figure 5.2: Real (right) and imaginary (left) parts of E and U as a function of the
CAP strength parameter η for the 2Πg resonance of C2H4. All values computed
by CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) and aug-cc-pVTZ+3s3p3d(A),
respectively. • refers to zeroth-order values, × to first-order values.

Tables 5.3 and 5.4 also report the results from a number of calculations with the aug-

cc-pVTZ+3s3p(A) and aug-cc-pVTZ+3s3p3d(A) bases. Contrary to what we observed

for bound states (cf. Table 5.4.1), the differences between values for ER and Γ obtained

with the two augmentation schemes “C” and “A” are not negligible. Zeroth-order val-

ues differ by up to 0.23 eV and first-order values still by up to 0.15 eV. In one case,

namely C2H−4 /aug-cc-pVTZ+3s3p, discrepancies of 0.4 eV are found, but this is prob-

ably related to the poor performance of the 3s3p augmentation scheme for C2H−4 dis-

cussed earlier. However, we consider results obtained with the scheme “C” superior for

several reasons: From the trajectories shown in Figure 5.2, one can see that the first-

order quantities UR and U I enter the region of near-stationarity for smaller η, i.e., the

resonance wave function shows faster convergence with respect to η, which is reflected

in smaller ηopt values obtained in calculations using the augmentation scheme “C”. Also,
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an increased dependence on the CAP onset is found in some cases when using scheme

“A”.

5.4.4 The Role of the Valence Basis Set

Besides the impact of additional diffuse functions, variations in the valence basis set

also influence the results for ER and Γ. This is illustrated by Tables 5.5 and 5.6, which

report values for resonance positions and widths of the 2Π resonance of CO− and the

2B2g resonance of C2H−4 computed using the aug-cc-pVXZ (X = D, T, Q, 5) bases, each

one augmented according to the 3s3p3d(C) scheme. Concerning the resonance position,

one can see that for both zeroth-order and first-order values the basis-set dependence

is more pronounced than for excitation energies corresponding to bound states of the

neutral molecules. The position of the resonance state in CO− still changes by 0.06

eV when going from aug-cc-pVQZ to aug-cc-pV5Z, whereas the largest shift observed

for a bound state is less than 0.03 eV. We also note that the positions of the resonance

states become smaller with increasing basis-set size, while the opposite is true for the

excitation energies of the bound Rydberg states.

Concerning the resonance width, trends are less clear. For CO−, both zeroth-order

and first-order values show a non-monotonous behavior with respect to the basis-set

size and no convergence is observed. The magnitude of the variations in Γ is however

comparable to those in ER. For C2H−4 in contrast, the dependence of Γ on the basis-set

size is much less pronounced and convergence seems to be reached. We also see that the

dependence of both ER and Γ on the CAP onset is somewhat mitigated when increasing

the size of the valence basis set: For the aug-cc-pVDZ basis set, a decrease of r0
x and r0

y

by 0.5 a.u. increases ER and Γ of the 2Π resonance of CO− by 0.032 eV and 0.073 eV,

respectively, whereas the same decrease leads to changes of just 0.025 eV and 0.026 eV

163



when using the aug-cc-pVQZ basis. This should be contrasted with the contrary impact

of additional diffuse functions discussed before. Tables 5.5 and 5.6 also show that the

values for ηopt decrease for larger basis sets, which is in line with that ηopt should be

zero in the complete basis set limit16.

Table 5.5: Resonance positions ER and widths Γ as well as values for ηopt for the 2Π

resonance state of CO− computed by CAP-EOMEA-CCSD using different valence
basis sets. For comparison purposes, EOMEE-CCSD excitation energies for sev-
eral bound states of CO are reported as well.

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z
+3s3p3d(C) +3s3p3d(C) +3s3p3d(C) + 3s3p3d(C)

2Π Resonance State of CO−

ER (raw)/eV 2.303 2.088 1.987 1.926
Γ (raw)/eV 0.727 0.650 0.696 0.804
ηopt/a.u. 0.0046 0.0028 0.0020 0.0015
ER (corr.)/eV 2.182 1.981 1.851 1.762
Γ (corr.)/eV 0.667 0.585 0.673 0.604
η′opt/a.u. 0.0175 0.0054 0.0062 0.0034
η′′opt/a.u. 0.0100 0.0048 0.0046 0.0028

Bound States of CO
E (2 1A1)/eV 10.777 10.961 11.021 11.046
E (4 1A1)/eV 12.446 12.597 12.642 12.663
E (1 1B2)/eV 8.703 8.626 8.612 8.608

To gain further insight into the dependence of ER and Γ on the size of the valence

basis set we performed an energy decomposition analysis for the 2Π resonance of CO−

and the 2B2g resonance of C2H−4 based on the following partition of the electronic

Hamiltonian:

H = EHF +∑
pq

Fpq{p†q}︸ ︷︷ ︸
one-electron part

+ ∑
pqrs
〈pq||rs〉{p†q†sr}︸ ︷︷ ︸
two-electron part

(5.19)
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Table 5.6: Resonance positions ER and widths Γ as well as values for ηopt for the
2B2g resonance state of C2H−4 computed by CAP-EOMEA-CCSD using different
valence basis sets. For comparison purposes, EOMEE-CCSD excitation energies
for several bound states of C2H4 are reported as well.

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z
+3s3p3d(C) +3s3p3d(C) +3s3p3d(C) + 3s3p3d(C)

2B2g Resonance State of C2H−4
ER (raw)/eV 2.191 2.091 1.988 —
Γ (raw)/eV 0.436 0.430 0.447 —
ηopt/a.u. 0.0032 0.0046 0.0025 —
ER (corr.)/eV 2.230 2.032 1.903 —
Γ (corr.)/eV 0.302 0.328 0.373 —
η′opt/a.u. 0.0210 0.0060 0.0054 —
η′′opt/a.u. 0.0248 0.0085 0.0043 —

Bound States of C2H4

E (2 1Ag)/eV 8.315 8.446 8.493 —
E (1 1B1g)/eV 9.681 9.791 9.830 —
E (1 1B1u)/eV 7.279 7.392 7.436 —

where the CAP is considered as a part of Fpq and 〈pq||rs〉 stands for the two-electron

integrals in MO basis. The expectation value of the one-electron part is then interpreted

as one-electron energy, whereas the expectation value of the remainder represents the

contribution from the EOM-EA-CCSD two-particle density matrix. The results are com-

piled in Table 5.7. For the real part of the energy, this illustrates that the one-electron part

converges significantly faster to the complete basis-set limit than the two-electron part,

which suggests that the overall slow convergence of the total energy is mainly driven by

an incomplete treatment of electron correlation. In contrast, for the imaginary part of

the energy, the one-electron and two-electron parts seem to diverge in opposite direc-

tions with increasing basis-set size. This holds true for both molecules, but whereas the
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Table 5.7: Energy decomposition analysis for the real and imaginary parts of the
energiesa of the 2Π resonance of CO− and the 2B2g resonance of C2H−4 computed
by CAP-EOM-EA-CCSD using different valence basis sets. All values in atomic
units.

aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pV5Z
+3s3p3d(C) +3s3p3d(C) +3s3p3d(C) + 3s3p3d(C)

2Π resonance of CO−

Total energy (real) -112.9835 -113.0979 -113.1573 -113.1805
One-elec. part (real)b -112.5652 -112.5920 -112.6078 -112.6167
Two-elec. part (real) -0.4183 -0.5059 -0.5495 -0.5638
Total energy (imag.) -0.0136 -0.0121 -0.0129 -0.0148

One-elec. part (imag.) -0.0479 -0.0485 -0.0559 -0.0725
Two-elec. part (imag.) 0.0343 0.0364 0.0430 0.0577

2B2g resonance of C2H−4
Total energy (real) -78.2836 -78.3881 -78.4333 —

One-elec. part (real)b -77.8614 -77.8781 -77.8935 —
Two-elec. part (real) -0.4223 -0.5100 -0.5399 —
Total energy (imag.) -0.0080 -0.0080 -0.0082 —

One-elec. part (imag.) -0.0289 -0.0318 -0.0389 —
Two-elec. part (imag.) 0.0209 0.0238 0.0307 —

aEvaluated at the respective ηopt. bIncluding nuclear repulsion energy.

trends roughly cancel out for C2H−4 , this is not the case for CO− leading to a seemingly

different behavior for the overall resonance width of the two systems.

One might be tempted to relate the basis set dependence of Γ to an insufficient

description of the interaction of the resonance state with the continuum, but we point

out that the addition of further diffuse functions has only little impact on ER and Γ (cf.

Section 5.4.3), which suggests the opposite. In total, we feel that the behavior of Γ

requires further investigation in order to develop a scheme for the extrapolation to the

complete basis set limit, but such an extension is beyond the scope of the present article.
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We point out, however, that the variations in Γ observed for CO− do not exceed 0.15 eV

so that reliable computations are still possible based on our current approach.

5.5 Applications

In this section, we will report resonance positions and widths for a number of shape

resonances of small to medium-sized molecules and compare the results from our

CAP-EOM-EA-CCSD scheme to those obtained using other theoretical approaches

or through experiment. Systems included in this study are N−2 , CO−, C2H−2 , C2H−4 ,

CH2O−, CO−2 , and C4H−6 . All these resonance states except for the last one are derived

by electron attachment to the π∗ lowest unoccupied molecular orbital of the correspond-

ing neutral molecules. C4H−6 (1,3-butadiene) is a special case as its π system extends

over more than a single double bond, which results in two low-lying resonance states.

We add that only the real part of the resonance wave function has a well defined

single-attachment character, while the imaginary part has a considerably different form.

Most often, it exhibits multireference character and is dominated by several single

attachments to very diffuse orbitals. Also, its dependence on the CAP strength is more

pronounced than that of the real part. A detailed investigation of this phenomenon is

beyond the scope of this article.

In all calculations, we employed the scheme developed in Section 5.4, i.e., we chose

the CAP onset based on the spatial extent of the ground-state wave function and used

the aug-cc-pVXZ+3s3p3d(C) bases. Computational details are compiled in Table 5.8.
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5.5.1 2Πg Resonance in N−2

The scattering of slow electrons by the N2 molecule has been studied experimen-

tally several times67–74 so that the 2Πg resonance of N−2 is rather well characterized.

Consequently, this resonance has served as a testing ground for numerous theoreti-

cal approaches including stabilization techniques65, 66, 75, 76, methods based on com-

plex scaling10, 77, 78, CAP-based schemes16, 25, 26, 58–62 as well as further approaches79–81.

Among other aspects, the impact of electron correlation on the resonance position and

width58 as well as their basis-set dependence25, 58, 60 have been investigated in detail

for this system. In addition, the resonance wave function has been studied over a

wide range of different bond lengths and adiabatic excitation energies have been deter-

mined10, 76, 82, 83. The potential interplay of the 2Πg ground state of N−2 with other reso-

nance states has been also investigated10, 84.

CAP-EOM-EA-CCSD results obtained for the resonance position and width are

compiled in Table 5.9 together with several values available from the literature. The

optimal CAP strengths found in our calculations are 0.0072 (0.0037) a.u. for the zeroth-

order result and 0.0119 (0.0025) a.u. and 0.0148 (0.0071) a.u. for the real and imag-

inary part of the first-order result obtained with the aug-cc-pVTZ+3s3p3d(C) (aug-cc-

pVQZ+3s3p3d(C)) basis set. We refrained from including experimental results in Table

5.9 except for the fixed-nuclei estimate by Berman et al. (ER = 2.32 eV, Γ = 0.41 eV)85,

which has been often considered as the reference value in previous theoretical studies.

We add that this value was not obtained directly from the experiment, but through a fit

to the experimental data using Feshbach’s projection operator formalism.

Table 5.9 illustrates that a confusing plethora of values for the resonance position

and width of the 2Πg state of N−2 have been reported. One can see that our results

obtained from CAP-EOM-EA-CCSD overestimate ER relative to the value from Ref.
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85, while Γ is underestimated. For our highest-level calculation (first-order CAP-EOM-

EA-CCSD/aug-cc-pVQZ+3s3p3d(C)) the deviation is about 0.15 eV for ER and 0.13

eV for Γ. For ER such a deviation is generally considered acceptable for EOM-EA-

CCSD when dealing with bound states. An assessment of the deviation in Γ is more

difficult as a comparison to bound states cannot be made. The differences between

our highest-level value and our remaining results show however that the basis-set size

and the correction for the CAP potential both make a sizable impact on ER and Γ, but

whereas these effects work in the same direction for the resonance position, the change

in Γ is more involved. As for the first-order correction, the results obtained within the

static-exchange approximation16 exhibit trends similar to those observed in the present

study.

Table 5.9 also shows that most approaches gave rise to too high values for the res-

onance position, whereas the reference value for the resonance width from Ref. 85 was

often surprisingly well reproduced. The impact of electron correlation is illustrated by

the comparison of high-level correlated methods to lower levels of theory. The posi-

tion of the resonance state is consistently calculated to be above 3 eV with HF, DFT,

and CIS based methods, regardless of whether stabilization techniques, complex scal-

ing, or CAPs are employed, while the use of correlated methods leads to a significantly

better agreement with the reference value. The only notable exception is the complex-

scaled MRCI result (1.38 eV) from Ref. 10, which is almost 1 eV below the reference

value. Interestingly, CAP-augmented MRCI calculations59 with a rather similar basis

set yielded a quite different resonance position (2.97 eV).

Compared to its effect on the resonance position, the role of electron correlation for

the width Γ is less clear. For example, the complex-scaled HF and CAP-HF calculations
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from Refs. 26, 77 agree with the reference value within 0.03 eV and 0.015 eV, respec-

tively, while some correlated calculations led to deviations of more than 0.2 eV59. In

fact, it was stated explicitly58 that several values reported in the literature might have

benefitted from error cancellation. We note that most authors reported values for Γ that

were higher than the reference value with some low-level approaches overestimating the

width by a factor of more than two, whereas our calculations underestimated Γ.

Regarding the basis-set dependence, a comparison between different schemes is

hampered by the fact that a variety of different basis sets has been used in previous

studies. Bearing in mind our findings from Sec. 5.4.4, it seems however justified to

conclude for CAP-based methods that basis-set effects may account at least partly for

the differences between values for Γ reported by different authors. In addition, the

results from Ref. 76 suggest that, as compared to our CAP-augmented EOM-EA-CCSD

scheme, the stabilization method combined with EOM-EA-CCSD leads to a somewhat

faster convergence with respect to basis-set size. However, also the highest-level (aug-

cc-pV5Z+3p) results obtained with the latter method (ER = 2.49 eV, Γ = 0.496 eV) still

show a sizable deviation from the reference values.
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Table 5.9: Resonance positions ER and widths Γ for the 2Πg resonance state of N−2
obtained using different theoretical methods.
Method ER/eV Γ/eV
Stieltjes imaging technique/special basis seta 2.23 0.40
Schwinger variational principle/ADC(3)/(11s8p3d)/[5s7p3d]b 2.534 0.536
Complex scaling/HF-SCF/ 3.19 0.44
Dunning’s (9s5p)/[5s3p]+2d+(5p2d)/[3p2d]+4p6dc

Complex scaling/MR-CI/Dunning’s (9s5p)/[5s3p]+1d+10pd 1.38 0.414
Complex scaling/Σ3 decouplings of the e−-propagator/[4s9p]e 2.11 0.18
Stabilization/MR-CI/ Dunning’s (9s5p)/[5s3p]+3p2d+4s1p1d(C) f 2.62 0.45
Stabilization/MR-CI/6-31+G∗+3pg 2.34 0.51
Stabilization/MP-PT2/ANO(14s9p4d3f)/[4s3p2d1f]+2s2p7d4g(C)h 2.36 0.42
Stabilization/CIS/aug-cc-pVTZ+3pi 3.77 1.14
Stabilization/TDDFT(HFE PBE)/aug-cc-pVTZ+3pi 3.078 0.54
Stabilization/EOMEA-CCSD/aug-cc-pVTZ+3pi 2.58 0.570
Stabilization/EOMEA-CCSD/aug-cc-pVQZ+3pi 2.49 0.502
Stabilization/EOMEA-CCSD/aug-cc-pV5Z+3pi 2.49 0.496
CAP/static exchange/[5s10p13d] (0th-order) j 3.888 1.363
CAP/static exchange/[5s10p13d] (1st-order) j 3.776 1.199
CAP-HF-SCF/(11s7p2d)/[5s4p2d]k 3.28 0.395
CAP-DFT(LSD/XC)/(11s7p2d)/[5s4p2d]k 3.39 0.506
CAP-MRCI/Dunning’s (9s5p)/[5s3p]+(12p)/[9p]+2dl 2.97 0.65
TCAP-MRCI/Dunning’s (11s6p)/[5s3p]+7p3d2fm 2.42 0.45
CAP-Σ(ADC(2))/TZP+9p2d2fn 2.58 0.55
CAP-Fock space-MRCC/TZ(7p2d)o 2.52 0.39
CAP-CIP/TZ(7p2d)p 2.28 0.482
CAP-EOMEA-CCSD/(11s8p3d)/[5s7p3d]+3pq 2.07 0.42
CAP-EOMEA-CCSD/aug-cc-pVTZ+3s3p3d(C) (0th-order)r 2.619 0.383
CAP-EOMEA-CCSD/aug-cc-pVTZ+3s3p3d(C) (1st-order)r 2.571 0.255
CAP-EOMEA-CCSD/aug-cc-pVQZ+3s3p3d(C) (0th-order)r 2.508 0.364
CAP-EOMEA-CCSD/aug-cc-pVQZ+3s3p3d(C) (1st-order)r 2.478 0.286
Estimate via Feshbach projection formalism based on experimental datas 2.32 0.41

a See Ref. 80. b See Ref. 81. c See Ref. 77. d See Ref. 10. e See Ref. 78. f See Ref. 65.
g See Ref. 75. h See Ref. 66. i See Ref. 76. j See Ref. 16. k See Ref. 26. l See Ref. 59.
m See Ref. 58. n See Ref. 60. o See Ref. 61. p See Ref. 62. q See Ref. 25. rThis work. s

See Ref. 85.
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5.5.2 2Π Resonance in CO−

While we have employed the 2Π resonance of CO− as a test system in Section 5.4,

we will consider it in this section with a different focus, i.e., we will compare our

results to those obtained using other methods. In contrast to N−2 , which has been

studied frequently, comparatively few results have been reported for the isoelectronic

CO−23, 25, 66, 78, 86–89. Table 5.10 compiles the values available from the literature

together with some representative values from Section 5.4.

Table 5.10: Resonance positions ER and widths Γ for the 2Π resonance state of CO−
obtained using different methods.

Method ER/eV Γ/eV
Boomerang modela 1.52 0.80
Close coupling methodb 1.75 0.28
T-matrix/static exchange/(9s5p1d)/[4s3p1d]c 3.4 1.65
Complex scaling/ 1.71 0.08
Σ2 decoupling of the electron propagator (real SCF)/4s5pd

Complex scaling/Σ3 decoupling of the electron propagator/4s5pe 1.65 0.14
Stabilization/MP-PT2/ANO(14s9p4d3f)/[4s3p2d1f]+2s4p7d5f(C) f 2.02 0.35
CAP-EOMEA-CCSD/4s5p(C)+4s5p1d(O)g 1.32 0.12
CAP-EOMEA-CCSD/maug-cc-pV(D+d)Z+3pg 1.42 0.44
CAP-EOMEA-CCSD/aug-cc-pVTZ+3s3p(A) (1st-order)h 1.954 0.433
CAP-EOMEA-CCSD/aug-cc-pVTZ+3s3p3d(C) (0th-order)i 2.088 0.650
CAP-EOMEA-CCSD/aug-cc-pVTZ+3s3p3d(C) (1st-order)i 1.981 0.585
CAP-EOMEA-CCSD/aug-cc-pV5Z+3s3p3d(C) (0th-order)i 1.926 0.804
CAP-EOMEA-CCSD/aug-cc-pV5Z+3s3p3d(C) (1st-order)i 1.762 0.604
Experiment j 1.50 0.40

a See Ref. 86. b See Ref. 87. c See Ref. 88. d See Ref. 89. e See Ref. 78. f See Ref. 66.
g See Ref. 25. h See Ref. 23. i This work. j See Ref. 90.

Regarding the resonance position, Table 5.10 shows that most theoretical values are

higher than the experimental value (1.50 eV)74, 90 as in the case of N−2 . Also, similarly
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to N−2 , the resonance position is clearly overestimated in the static exchange approxi-

mation, in which electron correlation is neglected. Furthermore, CAP-EOM-EA-CCSD

results obtained using different bases vary by up to 0.75 eV, which demonstrates the

sizable impact of the basis set. We note, however, that our results obtained using the

aug-cc-pVXZ+3s3p3d(C) bases approach the experimental value with growing basis-

set size and that the first-order correction improves the resonance position with respect

to experiment. Our highest-level result (1.762 eV, first order, aug-cc-pV5Z+3s3p3d(C)

basis set) deviates from the experimental value by less than 0.3 eV.

The available values for the resonance width of CO− differ by more than an order

of magnitude as again illustrated by Table 5.10. The largest value reported (1.65 eV)

was obtained in the static exchange approximation, while the narrowest width (0.08

eV) was computed from the Σ2 decouplings of the electron propagator, a pattern that is

again similar to N−2 . The CAP-EOM-EA-CCSD results for the resonance width from

the present work and Refs. 23,25 vary by up to 0.68 eV, which illustrates once more the

great influence of the basis set. As for the resonance position, the first-order correction

improves the resonance width considerably with our highest-level result (0.604 eV, first-

order, aug-cc-pV5Z+3s3p3d(C)) differing by 0.204 eV from the experimental value.

However, we finally note that the experimental values for the resonance position and

width of CO− from Ref. 90 are not strictly comparable to the fixed-nuclei extrapolation

for N−2 from Ref. 85, which further complicates a rigorous assessment of the accuracy

of theoretical approaches.

5.5.3 2Πg Resonance in C2H−2

C2H−2 is a relatively well studied system and a number of theoretical25, 76, 78, 91–93 as well

as experimental94–99 values for the resonance position and width are available from the
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literature. Those values as well as the results we obtained using our new CAP-EOM-EA-

CCSD approach are compiled in Table 5.11. The optimal CAP strengths corresponding

to our results are 0.0036 a.u. for the zeroth-order value and 0.0071 a.u. and 0.0058 a.u.

for the real and imaginary part of the first-order value.

Table 5.11: Resonance positions ER and widths Γ for the 2Πg resonance state of
C2H−2 obtained using different methods.

Method ER/eV Γ/eV
Theory
Multiple scattering Xαa 2.6 1.0
Feshbach projection/MR-CI/Dunning’s (9s5p)/[5s3p]+1p1d+3pb 2.96 1.11
Complex scaling/ 2.50 0.21
Σ3 decouplings of the e−-propagator/5s9p1d, 3s3p(H)c

Stabilization method/EOMEA-CCSD/aug-cc-pVTZ+3pd 2.77 1.50
Stabilization method/TDDFT(HFE PBE)/aug-cc-pVTZ+3pd 2.4 0.6
CAP-EOMEA-CCSD/Dunning’s (9s5p)/[5s3p]+4p1d, 2s1p(H)e 1.79 0.80
CAP-EOMEA-CCSD/aug-cc-pVTZ+3s3p3d(C) (0th-order) f 2.655 0.979
CAP-EOMEA-CCSD/aug-cc-pVTZ+3s3p3d(C) (1st-order) f 2.450 0.831
Experiment
Trapped electrong 1.80/1.85 —
Vibrational excitationh 2.6 >1.0
Electron impacti 2.5 —
Dissociative attachment/electron transmission j 2.6 —
Electron transmissionk 2.6 ∼0.8

a See Ref. 91. b See Ref. 92. c See Ref. 78. d See Ref. 76. e See Ref. 25. f This work. g

See Refs. 94 and 95. h See Ref. 97. i See Ref. 98. j See Ref. 99. k See Ref. 96.

Table 5.11 shows that our results for the resonance position are in qualitative

agreement with those obtained from most experiments as well as from other theo-

retical approaches. Only when using the trapped electron method94–96 considerably

lower (∼0.7 eV) resonance positions were found. Our zeroth-order CAP-EOM-EA-

CCSD result (2.655 eV) agrees within 0.05 eV with the experimental values from Refs.
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96,97,99. We note that the first-order correction lowers the CAP-EOM-EA-CCSD result

for ER by about 0.2 eV bringing it closer to the experimental value from Ref. 98, but

basis-set effects may have an impact of similar magnitude.

Theoretical values for the resonance width vary between 0.19 eV and 1.11 eV and

only two rough estimates of 0.8 eV96 and >1.0 eV97 are available from experiment.

Our calculations qualitatively confirm these two estimates with the zeroth-order result

(0.979 eV) being closer to one value and the first-order result (0.831 eV) being closer to

the other value. As mentioned for the resonance position, basis-set effects may have a

sizable impact so that an ultimate decision between the two experimental values cannot

be made.

5.5.4 2B2g Resonance in C2H−4

Similar to CO−, the 2B2g resonance in C2H−4 has been chosen as a benchmark system

in Section 5.4 and here we will compare it with previously reported values. The 2B2g

resonance in C2H−4 has been studied quite extensively by both experimental100–102 and

theoretical methods62, 63, 76, 103–106. Experimental measurements by electron scattering

and electron impact techniques100–102 located the position of the 2B2g resonance around

1.8 eV with a width of Γ = 0.7 eV. Theoretically this resonance has been studied by a

wide variety of methods including complex scaling103, 105, CAP-based approaches62, 63,

stabilization76 as well as other techniques104, 106. The reported theoretical values vary

from 1.77 to 2.62 eV for the position of the resonance and from 0.11 to 1.32 eV for the

width, i.e., by more than an order of the magnitude in the latter case. All values along

with the results from our method are summarized in Table 5.12.
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Similar to the trends observed for the previously discussed systems, the largest val-

ues for both position and lifetime are found by DFT in combination with the stabi-

lization technique76, whereas the shortest lifetimes are obtained when using electron

propagator methods106. The resonance position obtained by CAP-EOM-EA-CCSD lies

reasonably close (within 0.3 eV) to the experimental value (1.8 eV) for all basis sets

used. Similar to results from EOM-CCSD calculations using stabilization techniques76,

the value of the resonance position is overestimated by CAP-EOM-EA-CCSD, but we

observe a positive trend when enlarging the valence part of the basis set from triple

zeta to quadruple zeta. Our best estimate for the position of the resonance (first-order

CAP-EOM-EA-CCSD/aug-cc-pVQZ+3s3p3d(C)) is 1.903 eV, which differs from the

experimental value by only 0.1 eV and is thus not worse than what is usually found in

EOM-EA-CCSD calculations for bound states.

The resonance width calculated with CAP-EOM-EA-CCSD is underestimated in

comparison to experiment by roughly a factor of two. However, similar to the position,

enlargement of the valence basis set brings the theoretical value of the width closer to

the experimental one. But in contrast to the position, the first-order correction worsens

the value for the width as compared to experiment so that the best estimate from our cal-

culations (0.373 eV, first-order CAP-EOM-EA-CCSD/aug-cc-pVQZ+3s3p3d(C)) still

deviates by more than 0.3 eV. We add that we observed a similar underestimation of the

resonance width in Section 5.5.1 for N−2 .
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Table 5.12: Resonance positions ER and widths Γ for the 2B2g resonance state of
C2H−4 obtained using different methods.

Method ER/eV Γ/eV
Theory
Complex scaling/second order rotated propagator/5s7pa 1.94 0.110
Complex scaling/second order rotated propagator/5s8pa 2.49 0.234
Complex scaling/second order rotated propagator/5s9pa 1.88 0.442
Complex Kohn methodb 1.83 0.460
Complex scaling/bi-variational SCF/5s7p c 1.93 0.2
Complex scaling/ 1.86 0.18
Second order biorthogonal electron propagator/5s7pd

Complex scaling/ 1.89 0.18
Diagonal 2ph-TDA biorthogonal electron propagator/5s7pd

CAP-CIP-V (1,0)
c (η0)/5s9pe 1.788 0.9675

CAP-CIP-V (1,0)
c (η1)/5s9pe 1.772 0.9520

CAP-CIP-V (1,0)
c (η2)/5s9pe 1.778 0.9076

CAP-FSMRCC-V (1,0)
c (η1)/aug-cc-pvDZ f 1.811 0.3780

CAP-FSMRCC-V (1,0)
c (η2)/aug-cc-pvDZ f 1.802 0.3662

Stabilization method/EOM-CCSD/aug-cc-pVTZ+3pg 2.06 0.64
Stabilization method/EOM-MP2/aug-cc-pVTZ+3pg 1.91 0.60
Stabilization method/ADC(2)/aug-cc-pVTZ+3pg 1.78 0.49
Stabilization method/KT(HFE BLYP)/aug-cc-pVTZ+3pg 2.58 1.32
Stabilization method/KT(HFE BPE)/aug-cc-pVTZ+3pg 2.62 1.08
Stabilization method/TDDFT(HFE BPE)/aug-cc-pVTZ+3pg 2.49 0.31
CAP-EOMEA-CCSD/aug-cc-pVTZ+3s3p3d(C) (0th-order) h 2.091 0.430
CAP-EOMEA-CCSD/aug-cc-pVTZ+3s3p3d(C) (1st-order) h 2.032 0.328
CAP-EOMEA-CCSD/aug-cc-pVQZ+3s3p3d(C) (0th-order) h 1.988 0.447
CAP-EOMEA-CCSD/aug-cc-pVQZ+3s3p3d(C) (1st-order) h 1.903 0.373
Experiment
Electron scatteringi 1.78 —
Electron impact j 1.8 0.7
Elastic scatteringk 1.8 0.7

a See Ref. 103. b Ref. 104. c See Ref. 105. d See Ref. 106. e See Ref. 62. f See Ref.
63. g See Ref. 76. h This work. i See Ref. 100, vertical electron affinity used. j See Ref.
101. k See Ref. 102.
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5.5.5 2B1 Resonance in CH2O−

Formaldehyde is of particular interest for our study since it is the smallest molecule

containing the highly-polar carbonyl group, which means that an accurate description

of polarization and correlation effects is especially important. Zeroth-order and first-

order estimates of the position and the lifetime of the 2B1 resonance state of CH2O−

along with previous experimental and theoretical data are compiled in Table 5.13. The

optimal CAP strength for the zeroth-order CAP-EOM-EA-CCSD values is 0.02 a.u.

and for the corresponding first-order values 0.024 a.u. and 0.021 a.u. for the real and

imaginary part, respectively.

Experiments by electron transmission spectroscopy107, 108 and vibrational excita-

tion109 report values of 0.86-0.87 eV for the resonance position. For the resonance

width, no experimental value is available from the literature, but only an estimate based

on electron collision experiments near 1 eV109, which shows the lifetime to be of the

same order of magnitude as the period of the ν2 vibrational mode (0.216 eV for neutral

formaldehyde110). This vibrational excitation (ν2) corresponds to the CO stretch mode,

which is mainly excited after autodetachment of the electron from the 2B1 resonance

state109. We deduce that the width of the resonance should be of the order of 0.1 eV as

it is the case for the π∗ resonances of the molecules discussed before.

Previously reported theoretical values vary from 0.682 eV to 3.0 eV for the posi-

tion and from 0.1 to 0.794 eV for the width of the resonance24, 111–116. Similar to the

molecules considered above, the static exchange approximation overestimates the posi-

tion of the resonance by roughly a factor of three111, 112. This can be explained by the

high polarity of the carbonyl group and the reorganization effects when the molecule

undergoes electron attachment, which results in strong correlation between the incident
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electron and the electrons of the neutral formaldehyde and shows the need for an accu-

rate treatment of electron correlation.

Table 5.13: Resonance positions ER and widths Γ for the 2B1 resonance state of
CH2O− obtained using different methods.

Method ER/eV Γ/eV
Theory
Complex Kohn methoda 1.0 0.5
Static exchangea 3.0 —
Complex scaling/electron propagator,
zeroth order/4s6p1d(C)2s1p(H)b 1.0 0.1
Complex scaling/electron propagator,
quasiparticle second order/4s6p1d(C)2s1p(H)b 0.99 0.1
Complex scaling/electron propagator,
quasiparticle diagonal 2ph-TDA/4s6p1d(C)2s1p(H)b 0.98 0.11
Complex scaling/electron propagator,
Diagonal 2ph-TDA/4s6p1d(C)2s1p(H)b 0.89 0.12
R-matrix method/augmented DZP c 1.32 0.546
R-matrix method/DZPd 1.46 0.794
Finite-element-discrete-model methode 0.682 0.429
CAP-SAC-CI /cc-pVDZ+[2s5p2d/2s2p] f 1.219 0.488
CAP-SAC-CI /cc-pVTZ+[2s5p2d/2s2p] f 1.119 0.462
CAP-SAC-CI /cc-pVQZ+[2s5p2d/2s2p] f 1.094 0.418
CAP-EOMEA-CCSD/aug-cc-pVTZ+3s3p3d(C) (0th-order)g 1.418 0.440
CAP-EOMEA-CCSD/aug-cc-pVTZ+3s3p3d(C) (1st-order)g 1.314 0.277
Experiment
Electron transmission spectroscopyh 0.86 —
Vibrational excitationi 0.87 —

a See Ref. 111, 112. b See Ref. 113. c See Ref. 114. d See Ref. 115. e See Ref. 116. f

See Ref. 24. g This work. h See Ref. 107, 108. i See Ref. 109.

We also note that the smallest width (0.1-0.12 eV) is reported for electron propagator

methods113, a pattern similar to N−2 , CO− and C2H−4 . Our method yields resonance

positions of 1.418 eV and 1.314 eV in zeroth order and first order, respectively, which is
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significantly higher than the experimental value, but close to the values obtained with the

R-matrix method114, 115. The widths obtained with CAP-EOM-EA-CCSD are 0.440 and

0.277 eV in zeroth order and first order, which agrees best with the results from SAC-

CI calculations24. However, the lack of experimental data prevents a more rigorous

assessment of the values for the width obtained with our method.

5.5.6 2Πu Resonance in CO−2

The scattering of slow electrons by the CO2 molecule is well characterized experimen-

tally117–123. Besides higher-lying resonance states, the existence of a 2Πu metastable

state in the range of 3.8-4 eV was established. Theoretically, this system has been stud-

ied most often with a special emphasis on the changes when going from the linear to

a bent structure, where the 2Πu state splits into a 2A1 and a 2B2 component124–127.

The role of a virtual state near 2 eV128 and the interplay with other resonance states127

have also been investigated. Somewhat surprisingly, the position and width of the 2Πu

resonance of the linear molecule have not yet been studied using high-level quantum-

chemical methods but only within the static exchange approximation129–132.

Table 5.14 reports the results from the CAP-EOM-EA-CCSD calculations for the

2Πu resonance of linear CO−2 along with theoretical and experimental values available

from the literature. Optimal CAP strengths corresponding to our values are 0.0074 a.u.

in zeroth order and 0.0295 a.u. (real part) and 0.0810 a.u. (imaginary part) in first order.

One can see that CAP-EOM-EA-CCSD qualitatively reproduces the experimental val-

ues for the resonance position and also agrees within 0.2 eV with results from static

exchange calculations. This is especially noteworthy as we observed in the preced-

ing sections that the static-exchange approximation tends to overestimate the resonance

position significantly. We also note that the impact of the first-order correction on the
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Table 5.14: Resonance positions ER and widths Γ for the 2Πu resonance state of
CO−2 obtained using different methods.

Method ER/eV Γ/eV
Theory
Scattering/static exchange+polarization/DZP basis seta 3.8 0.5
Schwinger variational method/static exchange/[5p4d/5p4d1f]b 5.39 0.64
Schwinger variational method/ 3.78 0.23
static exchange+polarization/[5s3p]+4s3p3dc

Close coupling/ 3.88 0.34
static exchange+polarization/DZP+add. diffuse functionsd

CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (0th order)e 4.020 0.119
CAP-EOM-EA-CCSD/aug-cc-pVTZ+3s3p3d(C) (1st order)e 3.997 0.198
Experiment
Electron scattering f 3.8 –
Electron transmission spectroscopyg 3.14h 0.20 ± 0.07
Electron impacti 3.8 –
Impact of slow electrons j 3.6 –
Electron transmission spectroscopyk 3.58 –
High resolution attachment spectrometryl 4.4 –

a See Ref. 129. b See Ref. 130. c See Ref. 131. d See Ref. 132. e This work. f See
Ref. 117. g See Refs. 118, 119. h The energy of the lowest observed vibrational level is
given. i See Ref. 120. j See Ref. 121. k See Ref. 122. l See Ref. 123.

resonance position is relatively small (0.02 eV) as compared to the systems discussed

above. With respect to the resonance width, Table 5.14 shows that CAP-EOMEA-CCSD

yields considerably smaller values than calculations in the static-exchange approxima-

tion, which can be related to the superior description of electron correlation in the former

case. Also, the impact of the first-order correction on the width is sizable (0.08 eV). We

finally point out that our first-order result for the resonance width (0.198 eV) agrees very

well with the experimental value (0.20 eV) available from the literature118.

182



5.5.7 2Au and 2Bg Resonances in C4H−6

1,3-Butadiene is different from all species discussed before in that its π system extends

over more than a single double bond. Two low-lying π∗ resonances of 2Au and 2Bg

symmetry result from this electronic structure, both of which have been characterized

experimentally100, 133. However, while experimental values for the resonance position

(0.62 eV and 2.82 eV) are available, no values for the width of either state have been

reported in the literature. It was only concluded that the lower lying 2Au state should

be longer lived as its spectrum exhibits vibrational structure. As for previous theoretical

treatments of these resonances, only one study on the 2Au state employing conventional

DFT/B3LYP, which found a surprisingly good agreement with experiment for the res-

onance position (0.76 eV), is available from the literature134, but the resonance widths

have apparently never been studied theoretically.

In Table 5.15, we report CAP-EOM-EA-CCSD results for the resonance positions

and widths of both π∗ resonances of 1,3-butadiene. For technical reasons, we employed

the aug-cc-pVDZ+3s3p3d(C) basis instead of the aug-cc-pVTZ+3s3p3d(C) basis for

this molecule, but in order to test again the validity of the “C” as compared to the

“A” scheme, results obtained with the larger aug-cc-pVDZ+3s3p3d(A) basis are also

included in Table 5.15. Optimal CAP strengths corresponding to the results for the 2Au

state in Table 5.15 are 0.0074 a.u, 0.0115 a.u., and 0.0210 a.u. for the zeroth-order and

first-order CAP-EOM-EA-CCSD calculations with the “C” basis-set and 0.0135 a.u.,

0.0175 a.u., and 0.0310 a.u. for the respective calculations with the “A” basis set. For

the 2Bg state, optimal CAP strengths of 0.0098 a.u., 0.0270 a.u., and 0.0190 a.u. were

obtained with the “C” basis set and of 0.0165 a.u., 0.0170 a.u., and 0.0350 a.u. with the

“A” basis set.
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Table 5.15: Resonance positions ER and widths Γ for the 2Au and 2Bg resonance
states of C4H−6 (1,3-butadiene anion) obtained using different methods.

Method ER/eV Γ/eV
2Au state

Theory
DFT/B3-LYP/6-311+G(2df,p)a 0.76 –
CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p3d(C) (0th order)b 1.336 0.110
CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p3d(C) (1st order)b 1.327 0.059
CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p3d(A) (0th order)b 1.348 0.145
CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p3d(A) (1st order)b 1.332 0.103
Experimentc 0.62 –

2Bg state
Theory
CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p3d(C) (0th order)b 2.683 0.720
CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p3d(C) (1st order)b 2.538 0.509
CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p3d(A) (0th order)b 2.647 0.919
CAP-EOM-EA-CCSD/aug-cc-pVDZ+3s3p3d(A) (1st order)b 2.544 0.630
Experimentc 2.82 –

a See Ref. 134. b This work. c See Ref. 100.

Table 5.15 illustrates that aug-cc-pVDZ+3s3p3d(C) and aug-cc-pVDZ+3s3p3d(A)

yield very similar results for the resonance position. CAP-EOM-EA-CCSD overesti-

mates the position of the 2Au resonance by about 0.7 eV regardless of the basis set used

and also independent of whether the first-order correction is applied. For the 2Bg state

an overall better agreement with experiment is found (0.2-0.3 eV), but the first-order

correction makes a sizable impact and moves the CAP-EOM-EA-CCSD values away

from the experimental value. Note that based on the findings from Section 5.4, one

should expect a significant change of all results when increasing the valence basis set.

Concerning the resonance width, our results support the experiment’s hypothesis that

the 2Au state is considerably longer lived than the 2Bg state. We also note that first-order
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results for the resonance width are smaller by 0.05 eV for the 2Au state and by 0.2-0.3

eV for the 2Bg state. Also, the change from the “C” to the “A” basis set makes an impact

of similar magnitude but in opposite direction. A final judgment of the accuracy of the

results, however, cannot be made due to the lack of other theoretical or experimental

estimates for the resonance width.

5.6 Conclusions

A complete and robust implementation of CAPs within EOM-EE-CCSD and EOM-

EA-CCSD methods has been presented together with a protocol for studying molecular

shape resonances without system-dependent optimization of basis set and CAP param-

eters.

In our approach, we have chosen the onset of the CAP as the expectation value of

the spatial extent of the ground-state wave function, which ensures that the ground state

is minimally perturbed by the CAP (∼ 10−5 a.u.). We showed that resonance posi-

tions and lifetimes obtained from energies, which are corrected for the CAP potential in

first order16, 23, are less sensitive (∼ 0.03 eV) towards variation of the CAP onset than

uncorrected zeroth-order energies. To determine the optimal CAP strength, we used the

criterion from Ref. 23 for the separate stabilization of the real and imaginary part of the

first-order corrected energy instead of the most widely used criterion |η dE/dη|= min

based on the zeroth-order energy.

Based on benchmark studies for the π∗ resonances of CO− and C2H−4 , we illustrated

that standard valence basis sets (for example, aug-cc-pVTZ) augmented by a set of dif-

fuse functions in the center of the molecule are suitable for the study of resonance states

with CAP-EOM-EA-CCSD. We showed that the use of only few diffuse functions of

each angular momentum is sufficient for an accurate description of the diffuse part of
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the resonance wave function. The further addition of diffuse functions has little impact

on resonance positions and lifetimes. We also note that the inclusion of diffuse functions

with angular momentum up to ` = 2 (d-functions) is essential for π∗ resonances, thus

suggesting that a set [3s3p3d] of diffuse functions should be sufficient for most applica-

tions. The convergence of resonance positions and especially lifetimes with respect to

the valence basis set is less clear, which indicates that electron correlation is of higher

importance for resonances than for bound states. Although the theoretical understand-

ing of the lifetime’s dependence on the valence basis set remains an open problem,

we emphasize that we did not observe variations of more than 0.15 eV in the lifetime.

Regarding the resonance position, we showed that the performance of CAP-EOM-EA-

CCSD is overall similar to that of EOM-EA-CCSD for bound electron-attached states.

In total, our results for a variety of π∗ shape resonances demonstrate that CAP-EOM-

EA-CCSD is competitive relative to other approaches for the theoretical treatment of

resonances and often able to reproduce experimental results for resonance positions and

lifetimes. The importance of electron correlation is again illustrated comparing with the

results from mean-field approaches, which often disagree qualitatively with experiment.

While the current paper shows the potential of CAP-EOM-CCSD approaches, it is

also clear that the application to larger systems is hampered by the need to calculate

η-trajectories, i.e., to recalculate the energy for different values of the CAP strength,

which increases the computational cost considerably as compared to conventional EOM-

CCSD calculations. To make our current implementation of CAP-EOM-CCSD faster

and to increase its black-box character, a number of improvements will be the subject

of future work. As the wave function changes smoothly with the CAP strength, one can

expect that the use of the wave function parameters from the previous step as guess will

accelerate the calculation of η-trajectories significantly provided that sufficiently small
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step sizes are used. A further automatization will be possible by the implementation

of analytic derivatives dE/dη as this will enable the determination of optimal CAP

strengths without that the user has to specify a step size and a range, where the search

is performed. Put together, these developments will allow for the application of CAP-

EOM-CCSD to resonance states of larger molecules as, for example, biochromophores,

where standard EOM-CCSD is routinely used for the characterization of bound states.
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Chapter 6: Cholesky representation of

electron-repulsion integrals within

coupled-cluster and

equation-of-motion methods

6.1 Introduction

Theoretical model chemistries1 based on wave function methods provide the most reli-

able approach to electron correlation. Among different ab initio-based techniques2,

coupled-cluster (CC) theory holds a pre-eminent position3. The single-reference CC

hierarchy of approximations allows one to compute highly accurate molecular struc-

tures, reaction energies, and other properties for ground-state species2. The equation-

of-motion (EOM), or linear response, approach4–6 extends the CC formalism to a vari-

ety of multi-configurational wave functions encountered in electronically excited states

and various open-shell species. Unfortunately, similarly to other wave function based

methods, the computational cost and hardware requirements (disk and memory) of CC

and EOM-CC scale quite steeply with the number of electrons and the size of the one-

electron basis set, i.e., the number of occupied (O) and unoccupied, or virtual (V ),

199



orbitals. For example, the scaling of a CCSD (coupled-cluster with single and double

substitutions) calculation is O2V 4, and for CCSDT (CCSD plus explicit triple excita-

tions) it is O3V 5. The disk usage in CC and EOM-CC calculations depends on the imple-

mentation specifics and can reach O(V 4); integral-direct algorithms could be employed

to reduce storage requirements.

The high cost of electronic structure calculations originates in the two-electron part

of the molecular Hamiltonian that describes electron-electron repulsion. The represen-

tation of the electron-repulsion integrals (ERIs) in an atomic orbital (AO) basis gives

rise to a four-index tensor:

(µν|λσ) =
Z

χµ(~r1)χν(~r1)
1

|~r1−~r2|
χλ(~r2)χσ(~r2)d~r1d~r2

The size of this object scales as N4 where N is the number of basis functions χi(~r). For

accurate results the size of the AO basis needs to be sufficiently large, for example a

popular cc-pVTZ basis defines 30 contracted Gaussian functions per second-row atom.

All electronic structure methods include contractions of ERIs with various tensors,

such as reduced density matrices, wave functions amplitudes, etc. Thus, the large size

of ERIs propagates through the electron structure calculations from self-consistent field

up to correlated methods.

Fortunately, the structure of the ERI matrix is sparse, which can be exploited in effi-

cient computer implementations. It was recognized a long time ago that representing the

“densities” by a linear expansion over the products of particular one-electron functions,

such as χµ(~r1)χν(~r1), includes linear dependencies and could be rewritten in a more

compact form using a new set of basis functions.
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There are two alternative approaches to achieve this goal, the density fitting,

or resolution-of-the-identity (RI)7–13, approximation and the Cholesky decomposition

(CD)14–20. In both approaches, the decomposed ERI matrix is represented as:

(µν|λσ)≈
M

∑
P=1

BP
µνBP

λσ
, (6.1)

where M is the rank of the decomposition, which depends on the target accuracy. The

algorithm for determining B is different in RI and CD approaches: RI uses a predeter-

mined auxiliary basis set that corresponds to the primary one-electron basis, whereas

Cholesky vectors are obtained by performing the Cholesky decomposition of the actual

ERI matrix. CD is thus a more general approach that can work with any primary basis

and is free from externally optimized auxiliary basis sets. The Cholesky approach can

be viewed as system-specific density fitting17–19.

Decomposition shown in Eq. (6.1) produces a more compact representation of ERIs

compared with the full ERI matrix, thus enabling memory and disk savings. In addition,

it allows one to achieve improved parallel performance of calculations involving ERI

through reduced disk input-output (I/O) penalties and better CPU utilization. For exam-

ple, the AO-MO integral transformation has a computational cost of O(N5) when using

the canonical procedure, now only involves the transformation of the RI/Cholesky vec-

tors and therefore requires only O(N3M) steps. The transformed B-matrices can be used

to assemble 〈pq||rs〉 integrals as needed in integral-direct implementations. However,

to realize the maximum potential of the method, programmable equations that involve

contractions of ERIs with the amplitudes and density matrices need to be rewritten.

The RI/Cholesky representation by itself does not lead to a scaling reduction in

CCSD and EOM equations unless special care is taken about exchange-like terms. A

number of strategies have been pursued to this end19, 21, 22, including using Cholesky
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decomposed wave function amplitudes23, 24 and local correlation schemes (see, for

example, Ref. 25, 26 and references therein). However, even without these more

advanced algorithms, computational savings due to a straightforward implementation

of RI/Cholesky representations are very useful, especially in view of improved parallel

scaling.

We present our implementation of RI/Cholesky within the CCSD and EOM-CCSD

suite of methods in the Q-Chem electronic structure package27, 28. The implementation

eliminates the storage of the most expensive four-index integrals and intermediates. As

described below, in the EOM-CCSD implementation we choose to keep two smallest

four-index intermediates, OOOO and OOOV.

While CCSD implementations have been reported before29, the EOM-CCSD meth-

ods have not been reimplemented using RI/CD. Below we briefly describe the algo-

rithms used to produce Cholesky and RI vectors (Sections 6.2.1 and 6.2.2) and explain

its implementation within CCSD and EOM-CCSD (Section 6.3). The following EOM

methods have been implemented: EE/SF, IP, and EA. We discuss the performance of the

new implementation in Section 6.4.

6.2 Algorithms

6.2.1 Cholesky algorithm

The idea of Cholesky decomposition (CD) of ERI14, 15, 17, 30 was proposed over 30 years

ago by Beebe and Linderberg14. The ERI matrix in the AO basis, which is a positive-

semidefinite14 matrix, can be represented in the Cholesky-decomposed form as given by

Eq. (6.1). The rank of the decomposition, M, is typically 3–10 times the number of basis

functions N17. It depends on the decomposition threshold δ and is considerably smaller
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than the full rank of the matrix, N(N + 1)/214, 17, 31. CD removes linear dependencies

in product densities17 (µν|, allowing one to approximate the original matrix to arbitrary

accuracy.

Decomposition threshold δ defined by the user is the only parameter that controls the

accuracy and the rank of the decomposition. The algorithm15, 17, 30 proceeds as follows:

(1) Compute all diagonal elements of ERI: D0
λσ,λσ

= (λσ|λσ).

(2) Choose the largest diagonal element (λσ0|λσ0). (λσ)0 here is a fixed index

corresponding to the largest diagonal element.

(3) Compute densities (µν|λσ0).

(4) Compute first Cholesky vector B1
µν = (µν|λσ0)/

√
(λσ0|λσ0).

From this point the algorithm proceeds in an iterative manner, checking the accuracy

and generating a new Cholesky vector to refine the previous-step approximation at every

iteration. k is an iteration count that starts from 2 and increments after every iteration.

(5) Update the residual of the diagonal by subtracting the Cholesky vector obtained

in the previous iteration D(k−1)
λσ,λσ

= D(k−2)
λσ,λσ

−B(k−1)
λσ

B(k−1)
λσ

.

(6) Choose the largest element of the diagonal residual Dk−1
λσk−1,λσk−1

. If

Dk−1
λσk−1,λσk−1

< δ, then terminate and return the Cholesky vectors, {Bi
µν}k−1

i=1 .

(7) Compute densities (µν|λσk−1) and the corresponding residual, D(k−1)
µν,λσk−1

=

(µν|λσk−1)−∑
k−1
i=1 Bi

µνBi
λσk−1

.

(8) Compute new Cholesky vector Bk
µν = Dk−1

µν,λσk−1
/
√

Dk−1
λσk−1,λσk−1

. Repeat from

step (5).

Since the ERI matrix is positive-semidefinite8, 14, 32, it follows that:

|Dk−1
µν,λσ
| ≤
√

Dk−1
µν,µνDk−1

λσ,λσ
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Thus, the accuracy of the decomposition is given by the largest element of diagonal

residual matrix Dλσ,λσ at every iteration (step 6), which ensures that the error in any

ERI matrix element does not exceed δ.

Note that the algorithm does not require the calculation and storage of the full ERI

matrix [O(N4)], which would be prohibitive for large systems. At the initialization of

the algorithm only the calculation of the diagonal elements is necessary [step 1, O(N2)],

which are updated at each iteration by subtracting newly produced Cholesky vectors to

form a residual diagonal matrix (step 5). The calculation of the densities (µν|λσk−1)

[step 7, O(N2)] are performed at each step with subsequent calculation of the residual

and the corresponding Cholesky vector (step 8). At each iteration only the calculation of

new O(N2) elements of the ERI matrix is required and the number of Cholesky vectors

grows by one resulting in the O(MN2) memory storage of all Cholesky vectors for the

final decomposition. Thus, only a small fraction of about 1–5% of the full ERI matrix

needs to be calculated in the decomposition procedure17.

The most expensive step is the calculation of the residual matrix17 (step 7), which

requires (M−1) subtractions of previously obtained Cholesky vectors at each iteration

[O((M− 1)N2) operations at each iteration], giving rise to the full complexity of the

algorithm of O(M2N2). For correlated calculations, the Cholesky vectors obtained in

the AO basis are usually transformed to the molecular orbital (MO) basis.

This algorithm is implemented using our tensor algebra library33 such that Cholesky

vectors are stored as a list of two-dimensional block tensors, i.e., a list of block matrices.

The library is based on virtual memory management such that block tensors are stored

in RAM if sufficient memory is available or saved on disk and reloaded as necessary.

Note that the generation of a new Cholesky vector [steps 5–8] does not require vectors

from previous iterations (k− 1 at step k) to be in RAM; for calculation of the residual
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matrix (step 5) they can be uploaded from disk sequentially, or even block-by-block.

After all Cholesky vectors Bµν are generated, the list of block matrices is merged to

form a three-dimensional block tensor BM
µν containing all the Cholesky vectors.

6.2.2 Resolution-of-the-identity algorithm

Similar to the Cholesky decomposition, the RI approach8–13 allows one to expand prod-

uct densities (µν| in an auxiliary basis set:

(µν|λσ)≈∑
PQ

CP
µν(P|Q)CQ

λσ
≡∑

PQ
(µν|P)(P|Q)−1(Q|λσ)

Indices P and Q denote auxiliary basis functions and (P|Q) defines a Coulomb metric

matrix13, 17, 20:

(P|Q) =
Z P(~r1)Q(~r2)
|~r1−~r2|

d~r1d~r2

The auxiliary basis expansion coefficients (CL
µν) are found by minimizing the differ-

ence between the actual and fitted product densities13, 17, 18, leading to the following set

of linear equations:

∑
L

(K|L)CL
µν = (K|µν)

By defining new auxiliary basis coefficients

BK
µν = ∑

L
CL

µν(L|K)1/2 ≡∑
L

(K|µν)(K|L)−1/2

we can rewrite approximate ERIs in a form identical to the Cholesky representation13

as given by Eq. (6.1).
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The accuracy and performance of RI depend on the quality of the chosen auxiliary

basis set. Ideally an auxiliary basis set should be balanced between accuracy and com-

pactness. Errors should be at least an order of magnitude smaller than the error due to

one-electron basis set incompleteness. Rank M should be no more that 2–4 times larger

than the number of AO basis functions N7, 17, 34–39. To achieve these goals, auxiliary

basis sets are usually optimized for each atom, AO basis set and level of theory (e.g.,

Hartree–Fock, MP2)7, 17, 34–39. In this work we employ auxiliary basis sets developed

for MP2.

6.3 RI/CD CCSD and EOM-CCSD methods: Theory

6.3.1 Coupled-cluster equations with single and double substitu-

tions

The exact solution of the Schrödinger equation can be written as the exponential of a

cluster operator T̂ operating on a reference function40:

Ψexact = ΨCC = eT̂
Φ0

where Φ0 is a single Slater determinant. In CCSD, the expansion of T̂ is truncated at a

two-electron excitation level:

T̂ ≈ T̂1 + T̂2
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For T̂1 and T̂2, the expansions area:

T̂1 = ∑
ia

ta
i a†i T̂2 =

1
4 ∑

i jab
tab
i j a†ib† j

Thus,

ΨCCSD = eT̂1+T̂2Φ0

The equations to determine CCSD correlation energy ECCSD and cluster amplitudes

ta
i , tab

i j are derived algebraically by a projection approach such that the Schrödinger equa-

tion is satisfied in the subspace spanned by the reference, singly, and doubly excited

determinants:

ECCSD = 〈Φ0|Ĥ|ΨCCSD〉= 〈Φ0|Ĥ|(1+ T̂1 +
1
2

T̂ 2
1 + T̂2)Φ0〉 (6.2)

0 = 〈Φa
i |Ĥ−ECCSD|ΨCCSD〉

= 〈Φa
i |Ĥ−ECCSD|(1+ T̂1 +

1
2

T̂ 2
1 + T̂2 + T̂1T̂2 +

1
3!

T̂ 3
1 )Φ0〉 (6.3)

0 = 〈Φab
i j |Ĥ−ECCSD|ΨCCSD〉

= 〈Φab
i j |Ĥ−ECCSD|

(1+ T̂1 +
1
2

T̂ 2
1 + T̂2 + T̂1T̂2 +

1
3!

T̂ 3
1 +

1
2

T̂ 2
2 +

1
2

T̂ 2
1 T̂2 +

1
4!

T̂ 4
1 )Φ0〉 (6.4)

Evaluating Eq. (6.2) in terms of amplitudes ta
i and tab

i j yields the following expression:

ECCSD = 〈Φ0|Ĥ|Φ0〉+∑
ia

fiata
i +

1
2 ∑

i jab
〈i j||ab〉ta

i tb
j +

1
4 ∑

i jab
〈i j||ab〉tab

i j (6.5)

aThroughout the paper, we adhere to the convention that i jkl denote occupied orbitals, abcd denote
virtual orbitals, and pqrs denote orbitals that can be either occupied or virtual.
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where

fia = 〈Φa
i |Ĥ|Φ0〉= hia +∑

j
〈i j||a j〉

〈i j||ab〉 = 〈i j|ab〉−〈i j|ba〉= (ia| jb)− (ib| ja)

(ia| jb) =
Z

φi(1)φ j(2)
1

r12
φa(1)φb(2)d1d2

Once Eq. (6.5) is substituted into Eqns. (6.3) and (6.4), ta
i and tab

i j amplitudes can be

solved iteratively by:

ta
i ∆

a
i = fia−∑

l
F(3)

li ta
l +∑

d
F(1)

ad td
i +∑

kc
F(2)

kc tac
ik −∑

kc
〈ic||ka〉tc

k

−1
2 ∑

klc
〈kl||ic〉tac

kl +
1
2 ∑

kcd
〈ka||cd〉tcd

ki

and

tab
i j ∆

ab
i j =〈i j||ab〉+P−ab

{
∑
c

tac
i j F(2)

bc −∑
k

I(2a)
i jkb ta

k +P−i j ∑
kc

I(1a)
kbic tac

jk

}

+P−i j

{
∑
c
〈 jc||ba〉tc

i −∑
k

tab
ik F(2)

jk

}
+

1
2 ∑

cd
〈ab||cd〉t̃cd

i j +
1
2 ∑

kl
tab
kl I(4)

i jkl

where ∆a
i = fii− faa and ∆ab

i j = ∆a
i +∆b

j . The expressions for the intermediates are given

in Table 6.1.

Memory requirements for the T amplitude update procedure in the closed-shell case

areb:
9
8

O4 +3O3V +6O2V 2 +
3
2

OV 3 +
3
8

V 4 (6.6)

bIn the closed-shell case, two spin cases of integrals and amplitudes are stored: 〈αα||αα〉 and
〈αβ||αβ〉; in the open-shell case there is additionally a third spin case: 〈ββ||ββ〉. With applicable per-
mutational symmetry taken into consideration and an assumption of no point group symmetry in the
molecule, the disk requirement for ERI objects in the closed-shell case are: 〈i j||kl〉 : 3

8 O4, 〈i j||ka〉 : 3
2 O3V ,

〈i j||ab〉 : 3
4 O2V 2, 〈ia|| jb〉 : O2V 2, 〈ia||bc〉 : 3

2 OV 3, 〈ab||cd〉 : 3
8V 4.
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Table 6.1: Intermediates for CCSD calculations and estimates to store and compute
them (closed-shell case).

Equation Memory Flops

F(1)
bc = fbc +∑kd〈kb||dc〉td

k −
1
2 ∑kld〈kl||cd〉tbd

kl

F(2)
i j = fi j +∑a f jata

i +∑ka〈 jk||ia〉ta
k

+∑kab〈 jk||ab〉ta
i tb

k + 1
2 ∑kab〈 jk||ab〉tab

ik

F(2)
ia = fia +∑ jb〈i j||ab〉tb

j

F(2)
bc = F(1)

bc −∑k fkctb
k −∑kld〈kl||cd〉tb

k td
l

F(3)
ki = fki +∑c F(2)

kc tc
i + 1

2 ∑ jab〈k j||ab〉tab
i j +∑lc〈kl||ic〉tc

l

t̃ab
i j = tab

i j +P−abta
i tb

j
3
4O2V 2

I(1a)
ia jb = 〈ia|| jb〉−∑c〈ia||bc〉tc

j −∑k〈ik|| jb〉ta
k 2O2V 2 3O3V 3

−1
2 ∑kc〈ik||cb〉

(
tca

jk +2tc
j t

a
k

)
I(2a)
i jkb = 〈i j||kb〉− 1

2 ∑l I(4)
i jklt

b
l + 1

2 ∑cd〈kb||cd〉t̃cd
i j +P−i j ∑c〈kb||ic〉tc

j
3
2O3V 5

4O3V 3

I(4)
i jkl = 〈i j||kl〉+ 1

2 ∑ab〈kl||ab〉t̃ab
i j +P−i j ∑a〈kl||ia〉ta

j
3
4O4 5

8O4V 2

∑kc I(1a)
kbic tac

jk 3O3V 3

∑cd〈ab||cd〉t̃cd
i j

5
8O2V 4

∑kl tab
kl I(4)

i jkl
5
8O4V 2

This estimate includes all the blocks of ERIs, necessary four-index intermediates, and

two sets of T2 amplitudes. Excluded are additional copies of T amplitudes required

by the DIISc procedure and lower-dimensional quantities. The O(N6) part of the total

computational cost of updating T amplitudes is 7
4O4V 2 + 29

4 O3V 3 + 5
8O2V 4.

Because RI and Cholesky representations of ERI use identical expressions, we begin

with the following expression for anti-symmetrized integrals:

〈µλ||νσ〉 ≈∑
P

BP
µνBP

λσ
−∑

P
BP

µσBP
λν

= P−νσ ∑
P

BP
µνBP

λσ
(6.7)

cUsually, several T2 vectors are stored for the DIIS algorithm.
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Upon substituting Eq. (6.7) into Eq. (6.5), (6.3), (6.4) and corresponding intermidi-

ates (Table 6.1) the equations for RI/CD CCSD can be obtained. The details on deriva-

tion of equations as well as new intermediates formed for RI/CD CCSD can be found in

Ref. 41.

To illustrate the difference in storage requirements, consider a calculation of closed-

shell naphthalene using the cc-pVTZ/rimp2-cc-pVTZ basis set. There are 68 electrons,

412 basis functions (O = 34, V = 378), 1050 auxiliary basis functions (M = 1050).

Whereas conventional CCSD calculation requires 10917 Mwords (85 GB), CD/RI-

CCSD requires 846 Mwords (6.6 GB). Thus, for this calculation the data set is almost

13 times smaller in the case of RI-CCSD.

The number of floating point operations scales as O(N6) for both CCSD and CD/RI-

CCSD. The most significant contraction in CCSD, ∑cd〈ab||cd〉t̃cd
i j , and its CD/RI-

CCSD counterpart, take the same number of flops. In the latter case the intermedi-

ate P−ab ∑P MP
daMP

cb is formed on the fly thus reducing overall memory requirements.

The CD/RI-CCSD equations involve fewer O3V 3-type contractions, leading to a smaller

prefactor (4O3V 3 vs. 29
4 O3V 3 in conventional CCSD). While this improvement is off-

set by the increased number and cost of O(N5) steps, in practical applications CD/RI-

CCSD are superior in terms of floating point operations, memory and I/O, as illustrated

by benchmark calculations in Section 6.4.
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6.3.2 EOM-EE/SF-CCSD and CD/RI EOM-EE/SF-CCSD

In the EOM-CCSD framework, the target excited-state wave functions are written

as42, 43:

|ΨR〉= ReT̂ |Φ0〉 (6.8)

〈ΨL|= 〈Φ0|e−T̂ L† (6.9)

The operators R and L are linear excitation operators:

R = R0 +R1 +R2 + · · · (6.10)

Rn =
1

n!2 ∑rabc···
i jk··· a

†ib† jc†k · · · (6.11)

In EOM-EE operators Rn are spin-conserving (Ms = 0 operators), whereas in EOM-SF

they involve changing the spin of an electron (Ms = −1). The spin-orbital form of the

EOM-CCSD equations is the same in EOM-EE and EOM-SF43, 44.

By introducing a similarity-transformed Hamiltonian H̄:

H̄ ≡ e−T̂ HeT̂ (6.12)

the energy and CCSD amplitude equations become:

ECC = 〈Φ0|H̄|Φ0〉 (6.13)

0 = 〈Φa
i |H̄−ECC|Φ0〉 (6.14)

0 = 〈Φab
i j |H̄−ECC|Φ0〉 (6.15)

. . .
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where ECC is the coupled-cluster energy for the reference state. Usually both T and R

are truncated at the same level, which is the single (S) and double (D) excitations in this

work. Thus, in the basis of the reference (O), S, and D we have:


0 H̄OS H̄OD

0 H̄SS−ECC H̄SD

0 H̄DS H̄DD−ECC




R0

R1

R2

= ω


R0

R1

R2

 (6.16)

where on the left-hand side ECC only appears for the diagonal elements in the diagonal

blocks and ω = E −ECC. Because the right eigenvectors do not form an orthonormal

set, R0 = r01̂ can be present in the target excited states:

r0 =
1
ω

(H̄OSR1 + H̄ODR2) =
1
ω

{
∑
ia

F(2)
ia ra

i +
1
4 ∑

i jab
〈i j||ab〉rab

i j

}
(6.17)

Eq. (6.16) is solved by using the generalized Davidson iterative diagonalization pro-

cedure43, which involves the calculation of the following σ-vectors:

σ
a
i = ([H̄SS−ECC]R1)

a
i +(H̄SDR2)

a
i

= ∑
b

F(2)
ab rb

i −∑
j

F(2)
i j ra

j −∑
jb

I(1)
ib jarb

j +∑
jb

F(2)
jb rab

i j −
1
2 ∑

jkb
I(6)

jkibrab
jk −

1
2 ∑

jbc
I(7)

jabcrbc
i j

(6.18)

212



Table 6.2: I and T intermediates for EOM-CCSD and estimated cost to store and
compute them (closed-shell case).
Equation Memory Flops

I(1)
ickb = 〈ic||kb〉−∑d〈kb||cd〉td

i −∑ld〈kl||cd〉tbd
il 2O2V 2 3O3V 3

+∑l
[
∑d〈kl||cd〉td

i −〈kl||ic〉
]

tb
l

I(2)
i jkb = 〈i j||kb〉−∑l I(4)

i jklt
b
l + 1

2 ∑cd〈kb||cd〉t̃cd
i j

+∑d
[
∑lc〈kl||cd〉tc

l

]
tbd
i j −∑c tbc

i j fkc

−P−i j

{
∑c

[
〈kb|| jc〉−∑ld〈kl||cd〉tbd

jl

]
tc
i +∑lc〈kl|| jc〉tbc

il

}
3
2O3V 21

4 O3V 3

I(3)
jcab = 〈 jc||ab〉−∑d I(5)

abcdtd
j + 1

2 ∑kl〈kl|| jc〉tab
kl

−∑l
(
∑kd〈lk||cd〉td

k

)
tab

jl −∑l tab
jl flc

+P−ab[∑k

(
〈ka|| jc〉− 1

2 ∑l〈kl|| jc〉ta
l −∑ld〈kl||cd〉tad

jl

)
tb
k

−∑ld〈lb||cd〉tad
jl ] 3

2OV 3 33
4 O3V 3

I(4)
i jkl = 〈i j||kl〉+ 1

2 ∑ab〈kl||ab〉t̃ab
i j +P−i j ∑a〈kl||ia〉ta

j
3
4O4 5

8O4V 2

I(5)
abcd = 〈ab||cd〉+ 1

2 ∑kl〈kl||cd〉t̃ab
kl −P−ab ∑k〈kb||cd〉ta

k
3
4V 4 5

8O2V 4

I(6)
klic = 〈kl||ic〉−∑d td

i 〈kl||cd〉 3
2O3V

I(7)
kacd = 〈ka||cd〉−∑l ta

l 〈kl||cd〉 3
2OV 3

T (1)
i j = ∑kc rc

kI(6)
jkic

T (2)
ab = ∑kc rc

kI(7)
kabc

T (3)
i j = 1

2 ∑kab〈 jk||ab〉rab
ik

T (4)
ab = 1

2 ∑i jc〈i j||bc〉rac
i j

σ
ab
i j =(H̄DSR1)

ab
i j − ([H̄DD−ECC]R2)

ab
i j

=−P−ab ∑
k

I(2)
i jkbra

k −P−i j ∑
c

I(3)
jcabrc

i +P−i j ∑
l

T (1)
il tab

jl +P−ab ∑
d

T (2)
ad tbd

i j +P−i j ∑
k

rab
jk F(2)

ik

+P−ab ∑
c

rac
i j F(2)

bc +P−i j P−ab ∑
kc

I(1)
ickbrac

jk +
1
2 ∑

kl
rab

kl I(4)
i jkl +

1
2 ∑

cd
rcd

i j I(5)
abcd

+P−i j ∑
l

T (3)
il tab

jl +P−ab ∑
d

T (4)
ad tbd

i j

(6.19)
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The I, F , and T intermediates used in Eq. (6.18) and (6.19) are collected in Tables 6.1

and 6.2. Total storage requirements for computing a σ-vector, including a set of T , R, σ

amplitudes and all the integrals and intermediates, are:

9
8

O4 +
9
2

O3V +6O2V 2 +
9
2

OV 3 +
9
8

V 4 (6.20)

Note that multiple sets of R and σ amplitudes are required in the Davidson procedure

for finding the excitation energies. Following the same procedure as in the derivation

of the CD/RI-CCSD equations one arrives at the equations with RI/CD integrals, details

can be found in Ref. 41.

For the computation of a σ-vector in the Davidson iterative procedure, the storage

requirement for CD/RI-EOM-EE implementation becomes:

5
2

O2M +5OV M +
5
2

V 2M +
3
2

O4 +
3
2

O3V +
21
4

O2V 2 (6.21)

For the naphthalene example the RI version of EOM-EE reduces the amount of

required memory by a factor of 24 relative to the canonical implementation, that is, the

conventional EOM-EE needs 30795 Mwords (241 GB), whereas CD/RI-EOM-EE uses

1275 Mwords (10 GB). The number of floating point operations in the σ-vector update

procedure for both conventional and RI/CD implementations scales as O(N6). The cost

of EOM-EE is 5
8O2V 4 + 3

4O3V 3 + 5
8O4V 2, whereas RI/CD-EOM-EE takes 5

8O2V 4 +

9O3V 3 + 5
4O4V 2 operations. There is a larger number of O3V 3 contractions in the latter

case, leading to a bigger prefactor. This is the result of the on-the-fly reassembly of

some fourth-order intermediates that are stored in memory in the case of conventional

EOM-EE.

214



6.3.3 EOM-IP-CCSD and CD/RI EOM-IP-CCSD

In EOM-IP-CCSD (EOM-CCSD for ionization potentials), the operator R is not particle-

conserving:

Rn(N−1) =
1

n!2 ∑rbc···
i jk···ib

+ jc+k · · · (6.22)

In EOM-IP-CCSD, R is truncated at the two-hole-one-particle excitation level. The

equations for σ-vectors are as follows:

σi = −∑
j

F(2)
i j r j +∑

jb
F(2)

jb rb
i j +

1
2 ∑

jkb
I(6)
k jibrb

jk

σ
a
i j = −∑

k
rkI(2)

i jka +P−i j ∑
k

ra
jkF(2)

ik +∑
b

rb
i jF

(2)
ab −

P−i j ∑
kb

I(1)
jbkarb

ik +
1
2 ∑

kl
I(4)
i jklr

a
kl +∑

b
tab
i j T (4)

b

T (4)
b =

1
2 ∑

klb
〈kl||ab〉rb

kl

where F and I intermediates are collected in Tables 6.1 and 6.2. Memory requirements

for the σ update procedure are:

3
4

O4 +3O3V +
11
4

O2V 2 (6.23)

This estimate excludes any three-dimensional quantities, e.g. EOM-IP amplitudes.

The CD/RI equations are derived following the same procedure as in the EOM-EE

case. For the naphthalene example, memory savings achieved by using RI are limited

to about 20%, that is, conventional EOM-IP requires 477 Mwords (3.7 GB), whereas

CD/RI-EOM-IP, needs 382 Mwords (3.0 GB). The difference in memory requirements

is not as large as in the case of EOM-EE because EOM-IP does not use the OVVV and

VVVV blocks of the ERIs.
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The number of floating point operations in the σ-vector update procedure for both

implementations is O(N5). The CD/RI scheme requires six O(N5)-type contractions,

the dominant contraction being O2V 2M. The canonical EOM-IP requires two O(N5)-

type contractions, the dominant contraction being O3V 2. Therefore, the σ-vector update

procedure in CD/RI-EOM-IP is expected to be about three times slower than in canon-

ical EOM-IP; however, some of this cost increase is offset by more favorable parallel

scaling. Moreover, for fair comparison, the calculation of the intermediates should also

be considered.

6.3.4 EOM-EA-CCSD and CD/RI EOM-EA-CCSD

In EOM-EA (EOM for electron attachment), the operator R is:

Rn(N +1) =
1

n!2 ∑rabc···
jk··· a+b+ jc+k · · · (6.24)

In EOM-EA-CCSD, R is truncated at the one-hole-two-particles level and the equations

for the σ-vectors are:

σ
a = ∑

c
F(2)

ac rc +∑
kc

F(2)
kc rac

k +
1
2 ∑

kcd
I(7)
kacdrcd

k

σ
ab
i = P−ab ∑

c
F(2)

ac rcb
i −∑

k
F(2)

ki rab
k −∑

c
I(3)
icabrc +

1
2 ∑

cd
I(5)
abcdrcd

i +P−ab ∑
kc

I(1)
kbicrac

k −∑
k

T (3)
k tab

ik

T (3)
k =

1
2 ∑

kcd
rcd

k 〈ki||cd〉
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where F(2) and I intermediates are given in Tables 6.1 and 6.2. The disk requirements

for the EOM-EA σ update procedure are estimated at:

7
2

O2V 2 +3OV 3 +
3
4

V 4 (6.25)

Following the same procedire as for EOM-EE and EOM-IP of substituting of RI/CD

decomposed integrals one arrives at RI/CD EOM-EA, details can be found in Ref. 41.

The storage requirement for CD/RI-EOM-EA σ-vector update is:

3
2

O2M +2OV M +
3
2

V 2M +
3
4

O2V 2 (6.26)

To again illustrate memory savings using the naphthalene example, conven-

tional EOM-EA uses 20408 Mwords (159 GB), whereas CD/RI-EOM-EA needs only

360 Mwords (2.8 GB). Because the most expensive in terms of storage intermediates

have been eliminated in the CD/RI implementation, the procedure requires about 57

times less memory.

Similar to EOM-IP-CCSD, the number of floating point operations for both imple-

mentations scales as O(N5). The dominant O(N5)-type contraction, out of two in canon-

ical EOM-EA, is the OV 4-type, whereas in CD/RI, which has ten O(N5)-type contrac-

tions, the dominant one is V 4M-type.

6.4 Benchmarks

The errors introduced by the RI and CD approximations have been extensively bench-

marked for quantities like total energies, molecular structures, dipole moments, and

excitation energies7, 15, 18, 20, 35, 37–39, 45–49; for a recent review see Ref. 19. Total energies
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have been analyzed for density functional theory18–20, 35, 45, Hartree-Fock15, 18–20, 45, 46

and MP2 methods7, 15, 18–20, 37, 45, 46. Typical errors in absolute energies are in a milli-

hartree (mEh) range [or 0.01 kcal/(mol-electron)] for common auxiliary basis sets20, 35, 37

and for CD with a threshold of 10−418, 19, 45.

The accuracy in energy differences, such as activation energies16, is better by a factor

of 2–3 in comparison to total energies due to error cancellation. The errors in dipole

moments computed with RI37, 38 and CD19 are below 0.01 D and are usually an order

of magnitude smaller that the errors due to the incompleteness of basis sets. The RI/CD

bond lengths are within 0.01 pm from the respective full calculations20, 38, 48. Aquilante

et al.19 have also reported vertical excitation energies (computed with CASSCF and

CASPT2) that show average errors less than 0.01 eV and 0.001 eV for thresholds of

10−3 and 10−4, respectively. The effect of the RI approximation on excitation energies

within an approximate second-order coupled-cluster model, CC2, has been thoroughly

investigated by Köhn and Hättig who reported errors of 0.01 eV or less48.

In the present paper, we focus mostly on the effect of using RI/CD representations

on energy differences between different electronic states, such as electronic excitation

energies and ionization/electron attachment energies. We also consider energy differ-

ences along potential energy surfaces.

We compare the timings for RI/CD versus canonical implementations and investi-

gate the parallel performance of the coded. All calculations were performed on desig-

nated benchmark nodes. The hardware configuration is Xeon X5675 (2 processors, 6

cores each, 3.0 GHz, 12 Mb cache), 126 GB RAM, RAID 0 4×600 GB=2.2 TB. This

configuration was referred to as Xeon-USC in our previous benchmark study33.

dDuring the final revision stage, a small algorithmic improvement has been implemented that resulted
in ∼5% speed-up in CD/RI CC/EOM calculations. Thus, the reported timings are roughly 5% slower
than the current code.
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We use the following test cases:

1. Phenolate form of the anionic chromophore of the photoactive yellow protein

(PYPb)50, 51. We perform CCSD calculations as well as EOM-EE/IP/EA-CCSD.

We consider the energy difference between the cis- and trans-isomers and elec-

tronic energy differences between various states (electronically excited, electron-

attached, and ionized states). The calculations were performed with three basis

sets — 6-31+G(d,p) (test1), aug-cc-pVDZ (test2), and cc-pVTZ (test3).

2. Cluster of two methylated uracils and a water molecule (test4)33. Energy differ-

ences between different electronic states are considered.

3. Tetramer of 4 nucleobases, AATT, from Ref. 52 (test5).

4. Oligoporphyrin dimer used in previous benchmarks33 (test6).

5. Cluster of methylated uracil, mU, and water from Ref. 53. We focus on the poten-

tial energy profiles along the proton-transfer reaction coordinate.

The following thresholds were used in CCSD and EOM-CCSD calculationse: T -

amplitudes convergence of |Tn−Tn−1| ≤ 10−4, energy convergence |En−En−1| ≤ 10−6,

Davidson’s procedure convergence |Rn| ≤ 10−5 (here Rn is the Davidson residual),

threshold for subspace expansion in Davidson’s procedure |Rn| > 10−5. Table 6.3 lists

parameters for different benchmark examples. All electrons were active in test1; test2

was executed with and without frozen core; core electrons were frozen in test3–6. In

some cases, we also employed Frozen Natural Orbitals (FNO) approximation54. All

Cartesian geometries and relevant energies are given in supplementary materials for Ref.

eQ-Chem’s keywords controlling the CC and EOM convergence: CC T CONV = 4, CC E CONV =
6, EOM DAVIDSON CONV = 5, EOM DAVIDSON THRESH = 5.
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41. All calculations were performed using regular (i.e., employing non-decomposed

ERI) Hartree–Fock procedure. Correlation energies in Table 6.3 are for canonical cal-

culations (using full ERI) except for test5.

Tables 6.4 and 6.5 presents the comparison of the canonical CCSD calculation and

RI/CD approximations. We note that the errors in total CCSD energies for RI and

CD/10−3 approximations are comparable (and are in a millihartree range). However,

the rank of CD/10−3 is often less than that of RI giving rise to a more significant speed-

up (the situation is reversed in for test3 which uses the cc-pVTZ basis). We also note

that CD/10−4 leads to the rank comparable to the size of the auxiliary basis in RI (1065

versus 1099), but yields two orders of magnitude more accurate total energies (error

8.27×10−6 versus 8.10×10−4 hartree).

Overall, RI/CD CCSD calculations are 10–60% faster than the canonical implemen-

tation. We observe a more significant speed-up for larger calculations, e.g., compare

test4, test3, and test2 versus test1, likely because the I/O penalties are more pronounced

for larger jobs. For the same molecule, we observe more significant speed-up in larger

bases (compare test3 versus test2 and test1), because larger bases have more linear

dependencies. Using test4 as an example, we observe that combination of CD with

FNO approximation leads to a very impressive speed-up, i.e., CD/10−3/FNO calcula-

tion takes only 15% of the time of the full CCSD calculation.
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Finally, let us consider two large examples, i.e., a nucleobase tetramer (AATT)33, 52

(test5, C1 symmetry, 966 basis functions, 38 core orbitals frozen) and the oligopor-

phyrin dimer (test6, D2h symmetry, 942 basis functions, 58 core orbitals frozen)33 and

compare them to the canonical calculations33. In test5 we also employ FNO approxi-

mation (279 out of 830 virtuals frozen, total 649 active orbitals). First, we note signifi-

cant reduction in disk requirements for both examples (e.g., 382 GB versus 2.8 TB for

AATT). For test6, the first RI/CD CCSD iteration is more than twice faster than in the

canonical implementation (6.33 hours for RI-CCSD versus 13.2 hours for the canoni-

cal CCSD33). However, we observe a slowdown of the subsequent iterations due to the

increasing number of T -amplitudes that need to be handled by the DIIS procedure. The

average time per iteration for oligoporphyrin is 12 hours (194.9 hours total time, 16 iter-

ations), although the first iteration is two times faster (6.33 hrs). We also computed

oligoporphyrin in combination with FNO (130 out of 749 virtual orbitals frozen, 754

active orbitals) with time for first iteration 2.35 hours and the average time per iteration

3.95 hours. For AATT we observe a similar speed-up of RI-CCSD iterations, the first

RI-CCSD iteration takes 39 hours (to be compared to 60 hours in the canonical imple-

mentation33). AATT computed with CD/10−2 yields a rank of 1688 and the first CCSD

iteration takes 28.25 hours, to be compared with 60 hours in the canonical implementa-

tion and 39 hours with RI/rimp2-cc-pVTZ.

A more detailed breakdown of timings for CCSD calculations is given in supplemen-

tary materials for Ref. 41 (Table S1). As expected, the evaluation of intermediate I(2i)
i jab

takes a significant fraction of time, especially in larger bases (it scales as O2V 4). Evalu-

ation of equation for t2 amlitudes, which contains one O3V 3 (third term) and one O4V 2

(the last term) contractions, is also significant and becomes dominant in an electron-rich

case, test6.
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The time used for the decomposition and integral transformation steps is also shown

in Tables 6.4 and 6.5. Since the present implementation of the decomposition algorithm

does not use point group symmetry, the timings for test1–test3 are relatively large. We

note that for test4 (C1), the time of decomposition with a threshold of 10−3 is about 12%

of the total time for CCSD iterations.

We investigate parallel performance using test4 (Table 6.6). The parallel scaling is

improved, e.g., the canonical implementation shows a factor of 6 speed-up on 12 cores,

whereas the RI/CD code is accelerated by a factor of 9. Thus, the speed-up relative to

the canonical CCSD code becomes more pronounced on 12 cores, e.g., on a single CPU,

RI/CD calculation is about 20% faster, whereas on 12 cores, it is almost a factor of two

faster than the canonical code. This improvement in the parallel performance is due to

the significant reduction of the amount of data to be handled in the CCSD calculations.

Table 6.6: Wall time per CCSD iteration (sec) using 80 GB RAM.
Job 1 core 4 cores 8 cores 12 cores
Full 46405 14278 (×3.25) 9506 (×4.88) 7973 (×5.82)
RI/rimp2-aug-cc-pVDZ 39347 10283 (×3.83) 5539 (×7.10) 4342 (×9.06)
CD/10−3 37330 9889 (×3.78) 4973 (×7.51) 4185 (×8.92)

Table 6.7 shows EOM energies and timings for test1 and test2; the results for test2-

fc and test3 are presented in Table 6.8. We note that RI and CD/10−3 give comparable

errors in excitation, attachment, and ionization energies, i.e., less than 0.01-0.001 eV.

These errors are consistent with those reported for the CASSCF and CASPT2 meth-

ods19. The errors in the energies are systematically reduced with the Cholesky threshold

decrease from 10−2 to 10−4 for all methods. We observe that a threshold of 10−2 yields

errors of ∼0.03 eV, which is acceptable in many situations and is less than error bars of

EOM-CCSD.
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For test1, the timings for RI/CD EOM methods are slower than of the canonical

implementation due to the increased number of contractions, as explained in Section 6.3.

However, in a larger basis (aug-cc-pVDZ versus 6-31+G*), the gap shrinks for EOM-IP

(total RI/CD EOM time is almost the same as of the canonical calculation), and RI/CD

EOM-EE shows 60-70% speed-up. Further increase of the basis (to cc-pVTZ) leads

to an additional speed-up, i.e., RI/CD EOM-EE calculations for test3 take 25% of the

full EOM-EE time. This is because the increased number of time-determining contrac-

tions in RI/CD EOM-EE (7 for RI/CD EOM-EE versus 3 N6 operations in canonical

EOM) is offset by the significantly reduced disk and memory usage by RI/CD EOM

that reduces I/O penalties and improves parallel scaling. For example, for test5 (AATT)

EOM-EE-CCSD calculations (with frozen core and FNO) the estimated disk usage is

7.2 TB, whereas for the corresponding RI/rimp2-cc-pVTZ calculation it is only 590

GB. For test3, we observe that canonical EOM shows rather poor parallel scaling (CPU

102655 s, wall 93432 s, ratio=1.09), whereas for RI EOM we see more than a 10 fold

CPU/wall ratio (CPU 228202 s, wall 21553 s, ratio=10.58), leading to an overall 5-fold

speedup of Davidson iterations. Thus, RI/CD implementation of EOM not only extends

the applicability of the method to larger systems that may not be accessible by canonical

EOM-CCSD due to disk/memory bottlenecks, but also improves timings of the calcula-

tions by removing the overheads due to large size of the data.

The calculation time of the intermediates for EOM calculations is significantly

reduced for all RI/CD methods, as illustrated by test2 timings revealing that the inter-

mediates calculations (dominated by the VVVV block of the transformed integrals) take

almost as much time as Davidson iterations. Thus, the overall CD/RI EOM-EE timings

(Davidson iterations plus intermediates) are considerably faster (3-5 times) than those

of the canonical code when only of few EOM roots are computed for large systems.
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The detailed timings for RI EOM-EE-CCSD calculations are given in supplementary

information for Ref. 41 (Table S2). We observe that σ2-vector update procedure takes

most of total EOM time (96% for test 3). Within it, the calculation of I1i
i jab, is dominant

(70% of the total EOM time for test3), as expected based on O2V 4 operations required

to evaluate this term.

Calculations of ionization energies for test4 (Table 6.9) show the errors of the same

order of the magnitude, 0.001 eV and 0.0001 eV for RI and CD/10−3, respectively, as

in the PYPb examples (test1 and test2). Calculations of EOM-IP σ-vectors with RI/CD

are slightly slower than in the canonical calculations, however the time required for

calculation of intermediates is significantly smaller for RI/CD, resulting in more than

2-fold overall speedup. The speed-up for RI/CD EOM-IP is less than for RI/CD EOM-

EE due to smaller size of the data used by EOM-IP, which does not involve VVVV and

OVVV intermediates; thus, the canonical code shows much better parallel performance

than EOM-EE (for full EOM-IP, CPU 587 s, wall 63 s, ratio=9.45; for RI EOM-IP, CPU

2067 s, wall 214 s, ratio=9.70).

Using FNO (threshold 99.5%, 118 virtual orbitals frozen out of 410 total) signif-

icantly improves the total EOM timings making it more than 6 times faster than the

full canonical calculation. The errors introduced by the FNO approximation are larger

than those due to CD (∼0.01 eV), but they are still acceptable for most applications.

Thus, RI/CD in conjunction with FNO leads to significant reduction of both memory

and computational cost requirements, with only minor losses in accuracy.
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Table 6.9: EOM-IP-CCSD energies (absolute errors for RI/CD) and EOM wall
times (sec) for test4 (two lowest EOM roots).

Method EOM time EOM State 1 State 2
Inta Iterb Totalc Ratiod callse

EOM-IP-CCSD 5088 503 5591 10 8.421 eV 8.858 eV
RI f 1866 576 2442 0.4 10 1.0×10−3 1.0×10−3

CD/10−3 2083 514 2597 0.5 10 5.0×10−4 2.0×10−4

CD/10−3/FNOg 541 270 811 0.2 10 1.6×10−2 1.5×10−2

a Time for calculations of the EOM-CCSD intermediates for the Davidson procedure.
b Time for EOM iterations. c Total EOM time (intermediates + Davidson iterations). d

Ratio of total times: Time(RI/CD)/Time(Full). e Number of calls of σ-update procedure.
f rimp2-aug-cc-pVDZ auxiliary basis. g Frozen core and FNO (threshold 99.50%) was
used.

To quantify the errors in energy differences along potential energy surfaces, we

consider two examples. We begin by considering the energy differences between two

PYP isomers51 shown in Table 6.10. The energy difference between two PYPb isomers

(anti-syn and anti-anti) is 4.15 kcal/mol at the CCSD/6-31+G(d,p) level of theory. The

errors introduced by RI and CD are: 2.40× 10−3 (rimp2-aug-cc-pVDZ), 6.42× 10−2

(CD/10−2), 2.12× 10−2 (CD/10−3), and 9.00× 10−4 (CD/10−4) kcal/mol; the errors

are considerably smaller than the errors in the total CCSD correlation energy due to

error cancellation. Note that even for the crudest CD threshold (10−2) the error in the

energy differences is quite satisfactory (∼0.1 kcal/mol). The error cancellation effect is

more pronounced for RI where the error in energy differences is more than 2 orders of

magnitude less than the error in the total energy, whereas for CD the difference is more

modest (about 1 order of magnitude). Thus, in terms of the energy differences, RI is

more accurate than CD/10−3, but is still slightly less accurate than CD/10−4.

As a more challenging case, we consider scans along proton-transfer coordinate in

ionized mU-H2O cluster from Ref. 53. Fig. 6.1 shows CCSD and EOM-IP-CCSD

energies along the proton-transfer reaction coordinate computed in the 6-311+G(d,p)
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Table 6.10: Energy differences between PYPb isomers (Eanit−anti − Eanti−syn,
kcal/mol) and the corresponding errors against full CCSD.
Method Energy difference Error, kcal/mol Error, hartree
Full 4.1531
RI/rimp2-aug-cc-pVDZ 4.1507 2.40×10−3 3.82×10−6

CD/10−2 4.0889 6.42×10−2 1.02×10−4

CD/10−3 4.1319 2.12×10−2 3.37×10−5

CD/10−4 4.1540 9.00×10−4 1.43×10−6

basis set. We note that RI features the smallest errors, both in terms of absolute values

(around 10−4–10−5 eV) and in terms of non-parallelity errors (NPEs) (4× 10−5 and

5× 10−5 eV for CCSD and EOM-IP-CCSD energies, respectively). This is because

the auxiliary basis in RI is atom-centered and does not depend on geometry59. CD

shows larger errors along the scan; however, the respective NPEs are small and do not

exceed 0.001 eV for CD/10−3 and 0.0003 eV for CD/10−4. We note that the range of

changes in total energy along this scan is about 2 eV. Smooth behavior of the CD scans

is consistent with small variations of the rank along this scan, e.g., for CD/10−3 and

CD/10−4 the rank is 834±2 and 1188±3, respectively.

6.5 Conclusions

We present a new implementation of RI and Cholesky decompositions within the

CCSD/EOM-CCSD suite of methods in the Q-Chem electronic structure package27, 28.

This implementation eliminates the storage of the most expensive four-index electron

repulsion integrals and intermediates, such as VVVV, OVVV and OVOV blocks of ERI,

leading to a significant reduction in storage requirements and I/O overheads. The num-

ber of floating-point operations is reduced for CCSD; however, it is increased by approx-

imately a factor of 3 in EOM calculations (σ-vectors update) because the transformed
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Figure 6.1: Top: CCSD (left) and EOM-IP-CCSD (right) energies along the
proton-transfer coordinate in mU-H2O. Bottom: Errors of RI/rimp2-aug-cc-pVTZ
and CD approximations.

integrals and related intermediates, which are computed only once in canonical EOM,

need to be reassembled at each Davidson iteration in the RI/CD implementation. How-

ever, this undesirable increase in computations is offset by significantly reduced I/O

overheads. In a shared-memory parallel setting the reduction of I/O also leads to better

CPU utilization and improved parallel scalability. When the calculation of the interme-

diates is included, the ratio between RI/CD and canonical EOM-EE timings is about

0.3–0.5 for moderate-size basis sets. The gains are more significant in large bases, e.g.,

a RI-EOM-EE-CCSD/cc-pVTZ calculation takes only 15% of the time required for the

full calculation. Additional computational savings can be achieved by combining RI/CD

and FNO approaches54.
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The accuracy of RI/CD implementations is benchmarked with an emphasis on

energy differences, such as excitation energies. In agreement with previous benchmarks

based on the CASSCF, CASPT2, and CC2 methods19, 48, we observe that the errors in

energy differences are smaller than the errors in total energies due to error cancellation.

Typical errors in the CCSD correlation energy are less than a millihartree for the RI

approximation with RI-MP2 auxiliary bases, however, the respective EOM errors are

less than 0.001 eV. The accuracy of CD can be controlled by a single threshold. For

a threshold of 10−4, which results in a rank similar to RI, the errors in total energies

are two orders of magnitude less than for RI; however, the errors in energy differences

are roughly the same. This threshold is therefore recommended when high accuracy is

required. We note that errors in excitation energies are quite small when using thresholds

of 10−2 and 10−3 (less than 0.04 and 0.008 eV, respectively); therefore these thresholds

can be used in most calculations.

This paper presents our first step towards developing reduced-scaling CC/EOM-CC

codes. While the present implementation does not reduce scaling of the calculations,

it affords significant computational savings thus extending the applicability of these

methods to larger systems. In order to achieve further gains, additional steps should

be taken. Among promising strategies19 are a tensor hyper-contraction approach21, 22,

local correlation schemes and pair natural orbitals25, 26, 60, 61, as well as reduced-rank

representations of the CC/EOM amplitudes23, 24, 62, 63.
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Chapter 7: Root-specific eigenvalue

solvers in the EOM family of methods:

Implementation and benchmarks

7.1 Introduction

The task of finding several eigenpairs of large matrices is ubiquitous in science and engi-

neering. It appears in structural dynamics, electrical networks, magnetohydrodynamics,

control theory and many more1. In quantum chemistry it arises in the context of find-

ing excited-state solutions in configuration interaction (CI)2, 3 and equation-of-motion

(EOM) methods3–7.

Even though the computational power has been growing very rapidly for the last two

decades, the standard algorithms that find the entire eigenvalue spectrum (like the QR

algorithm8–10) cannot handle very large matrices (e.g., N > 105). In EOM-EE calcu-

lation of a moderate-size system (around 300 Gaussian basis functions) the dimension

of the full matrix exceeds 109. Obviously, it would be unwise to construct, store, and

attempt to diagonalize the full matrix of such a size using standard numerical methods

of finding the entire set of matrix’s eigenpairs.
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Many numerical methods aiming to compute only a few eigenvalues of a large matrix

have been developed. These methods usually do not require the construction of the entire

matrix, but rather involve a projection of the original matrix onto a search subspace.

One of the most popular algorithms of this class are the Arnoldi’s1, 11 and Lancsoz1, 12

algorithms; for a detailed description of the algorithms for solving large eigenvalue

problems we refer the reader to a specialized book1.

In the quantum chemistry community, Davidson’s method13 has been predominantly

used for solving both Hermitian and non-Hermitian eigen-problems. Davidson’s method

can be viewed as a generalization of Lancsoz algorithm that uses the diagonal of the

matrix as a preconditioner (Jacobi preconditioner) for new vectors that are added to

the subspace1. The original matrix is projected to the search subspace of an increas-

ing dimension and diagonalized, yelding approximate eigenpairs of the original matrix.

Most of the matrices in quantum-chemical calculations are extremely sparse (only about

1-5% elements are non-zero) and strongly diagonally dominant, that is why Davidson’s

method is so successful and efective. The detailed description of Davidson’s algorithm

is given in section 7.3.1.

The original Davidson method was designed to find a few lowest eigenpairs of a

matrix. However, in many applications one might be interested in finding a few highly

lying states. For example, in core-ionization processes14–16 the electron is ejected from a

low lying orbital with energy as high as several hundred electron-volts. Another example

is Feshbach resonances where the excited state is a highly lying state above the ioniza-

tion threshold. If using the conventional Davidson method, one would need to request a

tremendous number (very often, more than 100) of roots to find the one desired root. In

most cases it is not feasible to compute so many roots, since in practice the convergence

of Davidson’s method for more than 10 roots is poor.
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Motivated by this class of problems, we present new modifications of Davidson’s

algorithm that target states specified by the user. The first algorithm we present finds the

roots around an energy shift specified by the user. This algorithm will be useful if there

is experimental or other data on an approximate energy value of a desired transition.

Another variant of the algorithm that we present is one targeting the solution dominated

by a specific transition, e.g., from/to user defined orbitals (e.g., from HOMO-3). This

solver will be useful for cases where we are interested in the root dominated by a par-

ticular transition (e.g. ionization from 1s orbital of carbon14, 16).

We also present an implementation of a completely new solver introduced by Eugene

Vecharynski et al - Generalized Preconditioned Locally Minimal Residual Method

(GPLMR)17. This method involves construction of an orthogonal subspace based on

the Krylov-space residuals, where the original matrix is projected and the eigenprob-

lem solved for the projected matrix. Similar to modified Davidson’s method it allows

to find the roots around a specified energy shift. The size of the search subspace can

be controlled by the user, thus allowing to limit the amount of memory and the number

of matrix-vector multiplications (σ-vectors updates) at each iteration. The benchmarks

of GPLMR and Davidson’s method are presented in section 7.4 for finding both lowest

eigenvalues and eigevalues around a specific energy.

7.2 Equation-of-motion (EOM) family of methods

Equation-of-motion (EOM) family of methods3–7 is a powerful tool for the description

of electronically excited, ionized, and attached states in molecular systems. It provides

a balanced treatment of the ground and selected target states, accurate recovery of cor-

relation energy, and is size-intensive. The wave function of the target state is written

as:
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ΨEOM = R̂exp(T̂ )|Φ0 > (7.1)

where R̂ is a general excitation operator. Depending on the type of the physical process

(excitation, ionization, electron attachment) the operator has different forms:

ˆREE = r0 +∑
ia

ra
i a†i+

1
4 ∑

i jab
rab

i j a†b† ji+ ... (7.2)

ˆRIP = ∑
i

rii+
1
2 ∑

i ja
ra

i ja
† ji+ ... (7.3)

ˆREA = ∑
a

raa† +
1
2 ∑

iab
rab

i a†b†i+ ... (7.4)

In singles and doubles approximation, the series are truncated after including corre-

sponding double amplitude term. Similar to configuration interaction (CI) the problem

of finding the wave function is a problem of diagonalizing of the similarity transformed

Hamiltonian:

H̄ = e−T HeT (7.5)

where H̄ is a real, non-Hermitian, and diagonally dominant matrix. By solving the non-

Hermitian eigenvalue problem for the right and left eigenvectors we obtain the energies

and wave function coefficients of the target states:

(H̄−ECCI)R = RΩ (7.6)

L(H̄−ECCI) = ΩL (7.7)

< L|R >= I (7.8)
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Where Ω is a diagonal matrix containing eigenenergies, and matrices R and L contain

the right and left eigenvectors (wave function coefficients) as columns.

7.3 Algorithms

7.3.1 Davidson’s method

The development of the original Davidson algorithm was driven by large-scale CI cal-

culations13 in which matrices are real and symmetric. The basic idea of Davidson’s

method is to project the original matrix onto an orthogonal search subspace and solve

the eigenvalue problem for the projected matrix which allows one to obtain approxi-

mate eigenpairs of the original matrix. At each step, the search subspace is expanded

by using preconditioned unconverged residuals as new vectors which, after performing

an orthogonalization, are added to the search subspace. The details of the algorithm for

finding n smallest roots of diagonally dominant matrix A are given below:

Original Davidson’s method

(1) Generate guess vectors based on the diagonal D of matrix A - sort the diagonal

elements in the ascending order and generate the corresponding unit vectors. Orthogo-

nalize those guess vectors and form the initial search subspace, V = {v1,v2, ..,vn}.

(2) Compute σ-vectors corresponding to the new vectors added to search subspace,

σi = Avi.

(3) Compute the subspace matrix: AV = V T σ.

(4) Solve the eigenvalue problem for subspace matrix: AV X = XΛ. Sort the eigen-

values in the ascending order (λ1 ≤ λ2 ≤ ... ≤ λk), choose n smallest. Discard the rest

of eigenpairs.
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(5) Compute the residuals of the eigenpairs corresponding to matrix A: ri = σXi−

λiV Xi, where λi are eigenvalues from step (4) and Xi are the corresponding eigenvectors.

(6) if ||ri||< ε for all residuals (ε is the convergence threshold) - terminate and return

eigenvalues {λ1,λ2, ...,λn} and corresponding eigenvectors {V X1,V X2, ...,V Xn} =

{R1,R2, ...,Rn}.

(7) If the subspace size reached the maximum specified value, use current approxi-

mations of eigenvectors as a new guess, orthogonalize them and go to step (2).

(8) Apply preconditioner to unconverged residuals: si = (D− λi)−1ri, where D is

the diagonal of matrix A. Discard all ||si||< δ, where δ is the threshold for adding new

vectors to the subspace.

(9) Orthogonalize the preconditioned residuals against all other vectors in the search

subspace, normalize and add them to the search subspace. Go to step (2).

The most expensive step of the algorithm is the projection of the original matrix to

the search subspace vectors (matrix-vector multiplication, step 2), so-called σ-vector

calculations. The number of matrix-vector evaluations at each step is equal to the num-

ber of new vectors added to the subspace. For EOM-EE, each matrix-vector multipli-

cation scales as O(N6), for EOM-EA and EOM-IP as O(N5). In terms of memory, the

most expensive (O(N4) for EOM-EE and O(N3) for EOM-IP/EA) is to store the sub-

space vectors vi and the associated σ-vectors σi = Avi. Thus, the maximum number of

stored vectors at each iteration is twice the size of the subspace.

The original Davidson method for symmetric matrices has been generalized for

nonsymmetric matrices18. For the non-symmetric case, the right and left search sub-

space vectors are constructed separately and the resulting left and right eigenvectors are

bi-orthogonalized. If only the eigenvalues and the right eigenvectors are needed, the
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method will be equivalent to the symmetric Davidson, with only exception that the sub-

space matrix (step 3 and 4) is non-symmetric. Recently, Davidson’s method has been

successfully combined with Jacobi’s approach for eigenvalue approximation leading to

the Jacobi-Davidson method1, 19. It can be viewed as an instance of Newton’s method

with subspace acceleration for eigenvalue problems.

The original method proposed by Davidson13 is designed to find a few (1-10) lowest

eigenpairs of the original matrix. However, in many applications one might need to com-

pute a few eigenpairs that lie high in the spectrum (so-called interior eigenvalues). We

present a modification to the original Davidson algorithm that enables computation of

the few eigenpairs closest to shift η specified by the user. The changes to the algorithm

are minor and only required in steps (1) and (4):

Davidson’s method with shift (only steps that are different from the original algorithm

are presented)

(1) Generate guess vectors based on the absolute value of diagonal D shifted by η,

sort the values in the ascending order (|D1−η| ≤ |D2−η| ≤ ...≤ |Dn−η|) and generate

the corresponding unit vectors. Orthogonalize these guess vectors and form the initial

search subspace, V = {v1,v2, ..,vn}.

(4) Solve the eigenvalue problem for subspace matrix: AV X = XΛ. Sort the absolute

values of eigenvalues shifted by η in the ascending order (|λ1−η| ≤ |λ2−η| ≤ ... ≤

|λk−η|), choose n lowest. Discard the rest of eigenpairs.

This algorithm targets the eigenvalues that lie close to shift η (e.g., transitions close

to η =300 eV) specified by the user. This feature will be useful if an experimental or

theoretical estimate of the energy is available that can be chosen as energy shift η.

We also present another modification to Davidson’s algorithm that allows one to find

a single root dominated by a particular transition chosen by the user (e.g., an IP transition
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from HOMO - 3). Mathematically, it means that the eigenvector will be dominated by

a single component corresponding to a physical transition specified by the user. The

algorithm will be looking only for a single root (number of roots n = 1) corresponding

to the eigenvector of this character. The changes to the algorithm are also minor:

Davidson’s method with user-defined guess (only steps that are different from the

original algorithm are presented)

(1) Generate the guess vector as a unit vector corresponding to the transition speci-

fied by the user. Form the initial search subspace, V = {v1}.

(4) Solve the eigenvalue problem for the subspace matrix: AV X = XΛ. Sort eigen-

pairs in the descending order of the overlap of the current eigenvector approximation

with the user guess vector: < v1|V X1 >≥< v1|V X2 > ... ≥< v1|V Xk > and choose the

largest one. Since the approximate eigenvector is constructed as a linear combination of

the vectors in the search subspace (which are orthonormal), the value of the overlap is

given by the first row of matrix X: < v1|V Xi >=< v1|∑ j v jX ji >= ∑ j < v1|v j > x ji = x1i.

7.3.2 Generalized Preconditioned Locally Minimal Residual

(GPLMR) method

Generalized Preconditioned Locally Minimal Residual (GPLMR) method is a new

eigensolver for computation of a subset of eigenpairs of a non-Hermitian matrices that

are closest to the chosen shift η17 like the modified Davidson method. This solver is

also a matrix-free solver that uses preconditioning and shows the convergence behav-

ior similar to the state-of-the art solvers. At every iteration the orthonormal search

subspace is constructed based on the approximations from previous iterations as well

as from preconditioned Krylov-space residuals. The eigenvalue approximation at each

step is calculated based on the harmonic Ritz eigenvalue of the projected matrix, with
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the eigenvector by the linear combination of search subspace vectors such that the min-

imal possible norm of the residual is achieved. The details of the algorithm for finding

n roots of non-Hermitian matrix A closest to shift η are given below:

Generalized Preconditioned Locally Minimal Residual (GPLMR) method

(1) Generate guess vectors based on the absolute value of diagonal D shifted by η,

sort the values in the ascending order (|D1−η| ≤ |D2−η| ≤ ...≤ |Dn−η|) and generate

the corresponding unit vectors V = {v1,v2, ..,vn} as guess vectors.

(2) Form the search subspace by orthogonalizing the set of vectors

{V,W,S(1), ...,S(m),P}, where:

• V is a block of current approximations to the eigenvectors V = {v1,v2, ..,vn}

• W is a block of unconverged residuals wi = T (Avi−ρivi), W = {w1,w2, ..,wk}. T

is a preconditioner and ρi = v∗i Avi

• S( j) is a block of Krylov-space residuals corresponding to the unconverged roots

computed recursevely from S( j−1) (S(0)=W): s j
i = T (As( j−1)

i − ρis
( j−1)
i ), S( j) =

{S( j)
1 ,S( j)

2 , ...,S( j)
k }

• P is a block of vectors from the span of the two previous approximations of the

unconverged roots (not computed at the first iteration): P = {p1, p2, .., pk}

Orthogonalize the set of vectors {V,W,S(1), ...,S(m),P} (ignoring vectors with norm less

than threshold δ) and form search subspace Z=orth{V,W,S(1), ...,S(m),P}.

(3) Solve the generalized eigenvalue problem of the shifted matrix, A-ηI, projected

to the search subspace, find n smallest (in absolute value) eigenvalues of the projected

matrix (θ j):

Z∗(A−ηI)∗(A−ηI)Zx j = θ jZ∗(A−ηI)Zx j (7.9)
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Compute approximate eigenvalues based on the harmonic Ritz eigenvalues of the pro-

jected matrix: λi = θi +η

(4) Compute the eigenvectors associated with the eigenvalues computed at step (3)

as:

Z∗(A−λiI)∗(A−λiI)ZXi = βiXi (7.10)

Construct the approximation to the eigenvectors as: V j+1 = ZX , where X =

{X1,X2, ..,Xn}. Construct the vector in the span of the new and the previous eigen-

vector approximation: P = V j+1−∑iV jXV , where XV is the first n rows of matrix X,

and V j is the approximation to eigenvectors from the previous iteration. Discard the

previous eigenvector approximation, V j. Set V = V j+1

(5) Compute the residuals of the obtained eigenpairs:

ri = AVi−λiVi, i = 1,2, ...,n (7.11)

if ||ri||< ε for all residuals (ε is the convergence threshold), than return the set of eigen-

values, λ1,λ2, ...,λn, and their corresponding eigenvectors, v1,v2, ....,vn. Else destroy

current search subspace Z and go to the step (2).

Note that the algorithm can use different preconditioners depending on the structure

of the matrix. In the present implementation, Davidson’s preconditioner ((D− λi)−1,

where λi is the current approximation to the eigenvalue) is used, since it provides robust

convergence for matrices in quantum-chemical calculations. One feature of the GPLMR

algorithm is that the maximum size of the search subspace is fixed (at most n*(m+3) vec-

tors if no vectors are ignored after the orhtogonalization) and can be controlled by the

user by choosing the number of Krylov space residuals m. Thus, the amount of memory
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for the GPLMR algorithm depends on the parameter m and is at most 2*n*(m+3) to

store the subspace vectors (Z) and the corresponding σ vectors (σ=AZ). In Davidson’s

algorithm, the size of the subspace is growing at each iteration until reaching the maxi-

mum (user specified) subspace size when the space is collapsed (step (7) in Davidson’s

algorithm).

Similar to Davidson’s method, the most expensive steps in the GPLMR algorithm

are matrix-vector multiplications that also depend on the size of the subspace. At

each iteration the algorithm performs m+1 matrix-vector multiplications to construct

wi,s
(1)
i ,s(2)

i , ...,s(m)
i residual vectors of the unconverged roots and at most m+3 matrix-

vector multiplications to project the matrix on the orthogonal search subspace corre-

sponding to the unconverged roots. Thus, the total maximum number of matrix-vector

multiplications per iteration is limited by n*(2m+4) if no vectors are ignored during

the orthogonalization and when none of the roots have converged. In general, GPLMR

requires more matrix-vector multiplications per iteration, as compared to Davidson, but

the memory and computational costs can be controlled by the user by choosing the

number of Krylov-space residuals, m. We also found that the convergence properties

of the algorithm can be enhanced by increasing the number of Krylov-space residuals

when only few unconverged roots are left. Since residual vectors wi,s
(1)
i ,s(2)

i , ...,s(m)
i

and vector pi are generated only for the unconverged roots, the size of the subspace,

n(unconverged)*(m+3)+nconverged, can be insufficient, thus the parameter m could be

augmented (for example by integer fraction of (#converged)/(#unconverged) if #con-

verged > #unconverged).
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7.4 Benchmarks

All benchmarks were done using the Q-Chem electronic structure package20, version

4.2. All algorithms presented in section 7.3 are implemented for the EOM-EE/EA/IP

methods. The details on how to use and control parameters of the eigenvalue solvers

within the EOM family of methods in Q-Chem can be found in the user manual20.

Figure 7.1: Benchmark systems: a hydrated photoactive yellow protein chro-
mophore PYPa-Wp (left) and dihydrated 1,3-dimethyluracil (mU)2-(H2O)2 (right)

For benchmark purposes, we choose two biologically relevant systems of C1 sym-

metry (Fig 7.1) - a hydrated photoactive yellow protein chromophore (PYPa-Wp from

Ref. 21) and dihydrated 1,3-dimethyluracil ( (mU)2-(H2O)2 from Ref. 22). For PYPa-

Wp, we used the 6-31+G(d,p) basis set (total 292 b.f.), whereas for (mU)2-(H2O)2, we

employed the 6-311+G(d,p) basis set (336 b.f.). We studied the convergence properties

of the GPLMR and Davidson solvers with the EOM-IP method for calculation of ioniza-

tion potentials; this EOM method has the smallest cost of matrix-vector multiplications,

as compared to EOM-EA and EOM-EE.
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Table 7.1: The comparison of the conventional Davidson and GPLMR(η = 0)
solvers in convergence of different number of lowest roots

PYPa-Wp/6-31+G(d,p)

Davidson’s method
nrootsa nitersb Max. # of stored vectorsc # matvecd

1 19 38 19
3 13 60 30
5 10 74 37
10 21 82 41

GPLMR
nrootsa nitersb m Max. # of stored vectorsc # matvecd

1 8 3 12 72
3 5 3 36 127
5 4 5 80 216
10 5 5 158 510

(mU)2-(H2O)2/6-311+G(d,p)

Davidson’s method
nrootsa nitersb Max. # of stored vectorsc # matvecd

1 7 14 7
3 9 48 24
5 9 76 38
10 16 120 99
12 14 120 118

GPLMR
nrootsa nitersb m Max. # of stored vectorsc # matvecd

1 2 5 16 26
3 5 5 48 163
5 5 5 80 236
10 14 3 120 783
12 5 3 136 503

a The number of requested roots. b The number of iterations to converge all roots. c

only the subspace vectors and the corresponding σ-vectors are taken into account. d The
total number of matrix-vector multiplications (σ-vector updates).
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Table 7.2: The comparison of the Davidson and GPLMR solvers in convergence of
different number roots around a specified energy shift

PYPa-Wp/6-31+G(d,p)

Davidson’s method (η = 11 a.u.)

nrootsa nitersb Max. # of stored vectorsc # matvecd

1 DNCe – –
2 DNCe – –
3 DNCe – –

GPLMR (η = 11 a.u.)

nrootsa nitersb m Max. # of stored vectorsc # matvecd

1 3 3 12 27
2 3 3 24 57
3 DNCe 3 – –

(mU)2-(H2O)2/6-311+G(d,p)

Davidson’s method f (η = 0.5 a.u.)

nrootsa nitersb Max. # of stored vectorsc # matvecd

1 32 66 33
2 27 106 53
3 35 78 39

GPLMR f (η = 0.5 a.u.)

nrootsa nitersb m Max. # of stored vectorsc # matvecd

1 3 3 12 27
2 4 3 24 68
3 18 3 36 387

a The number of requested roots. b The number of iterations to converge all roots. c

only the subspace vectors and the corresponding σ-vectors are taken into account. d The
total number of matrix-vector multiplications (σ-vector updates). e Did not converge all
roots in 60 iterations. f In this case GPLMR and Davidson converged different roots.
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Table 7.3: Convergence of the GPLMR solver for the different numbers of Krylov-
space residuals

PYPa-Wp/6-31+G(d,p)
GPLMR

nrootsa nitersb m Max. # of stored vectorsc # matvecd

3 26 1 24 358
3 7 2 30 141
3 5 3 36 127
3 5 5 48 167

(mU)2-(H2O)2/6-311+G(d,p)
GPLMR

nrootsa nitersb m Max. # of stored vectorsc # matvecd

3 DNCe 1 – –
3 22 2 30 355
3 9 3 36 201
3 5 5 48 163

a The number of requested roots. b The number of iterations to converge all roots. c

only the subspace vectors and the corresponding σ-vectors are taken into account. d The
total number of matrix-vector multiplications (σ-vector updates). e Did not converge all
roots in 60 iterations.
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Table 7.4: Convergence properties of Davidson’s solver with user-defined guess
PYPa-Wp/6-31+G(d,p)

Davidson’s method (η = 11 a.u.)

nrootsa orb. coeff.b nitersc Max. # of stored vectorsd # matvece

4 0.908 7 14 7
13 0.892 7 14 7
30 0.885 59 118 59

(mU)2-(H2O)2/6-311+G(d,p)

Davidson’s methodc (η = 0.5 a.u.)

nrootsa orb. coeff.b nitersc Max. # of stored vectorsd # matvece

4 0.896 DNC f – –
10 0.901 6 12 6
28 0.920 36 72 36

a The number of requested roots. b The r1 coefficient of user defined orbital in the
final solution c The number of iterations to converge all roots. d only the subspace
vectors and the corresponding σ-vectors are taken into account. e The total number of
matrix-vector multiplications (σ-vector updates). f Did not converge all roots in 60
iterations.
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The following convergence parameters have been used in benchmarks: ||r||2 < 10−5

as the convergence criterion for both Davidson’s and the GPLMR solvers, ||r||2 < 1
210−5

as the criterion to ignore insignificant vectors for Davidson and ||r||2 < 10−14 for

GPLMR. The maximum number of iterations for both methods has been set at 60; the

maximum size of the subspace size was set 60 for Davidson. The Krylov-space resid-

uals and vectors pi were constructed only for the unconverged roots, for the converged

roots, only the current approximation of the eigenvector was used to expand the sub-

space in GPLMR. If the number of the converged roots was higher than the number of

the unconverged ones in GPLMR, the parameter m for the unconverged roots have been

amplified by the factor b #converged
#unconverged c, but such that the augmented m does not exceed

10. In the following benchmarks, we evaluate the convergence properties of the solvers

(the number of iterations to converge) as well as its computational (the number of matrix

vector operations) and memory (the number of stored vectors) costs.

First, Table 7.1 compares the performance of the conventional Davidson and

GPLMR solvers (no shift) in finding different number of the lowest roots. The GPLMR

solver was executed with parameters m=1,2,3, and 5 and the results with the smallest

number of matrix-vector multiplications for each quantity of the requested roots are

compiled in Table 7.1. One can see that in all cases the GPLMR solver converges the

requested number of roots faster than Davidson, usually in up to 3 times less iterations.

However, since each iteration of the GPLMR solver is significantly more expensive than

Davidson’s, the overall number of matrix-vector multiplications is in some cases more

than 10 times larger for GPLMR. We also note that in the case of PYPa-Wp m = 3 is

working slightly better for converging 1 and 3 roots, and m = 5 is better for converging

of 5 and 10 roots, whereas for (mU)2-(H2O)2 the situation is opposite.
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Next, we compare the convergence of the interior eigenvalues by the solvers in the

cases of large and moderate energy shifts (Table 7.2). For PYPa-Wp, we choose large

energy shift of 11 a.u. (299.32 eV). The GPLMR solver very easily converges 1 and 2

roots (288.66 and 289.13 eV) around the specified energy shift, but fails to converge a

block of 3 roots in 60 iterations. At the same time, Davidson is unable to converge even a

single root for a chosen energy shift within 60 iterations. For (mU)2-(H2O)2, we choose

a moderate shift of 0.5 a.u. (13.61 eV). In this case GPLMR converges 1 and 2 roots

quite fast, but takes more than 10 iterations to converge 3 roots. The Davidson algorithm

converges 1,2, and 3 roots for the specified shift in nearly 30 iterations. Interestingly,

GPLMR and Davidson converged to different solutions: GPLMR converged 3 roots to

12.14, 11.62, 11.24 eV, whereas Davidson converged to 13.60, 13.67 and 14.11 eV that

is clearly much closer to chosen energy shift (13.61 eV).

As was mentioned before, the size of the subspace in the GPLMR algorithm can be

controlled by the user by changing the number of Krylov-space residuals generated for

the unconverged roots. In Table 7.3, we compare how this parameter affects the conver-

gence and the total number of matrix-vector multiplications for 3 lowest roots. We see

that, obviously, by increasing the number of the Krylov-space residuals, the number of

iterations decreases. For PYPa-Wp the parameter m=1 gives a very poor convergence

(26 iterations). Increasing the parameter to m=2 accelerates the convergence by more

than 3 times (7 iterations). A further increase of parameter m to 3 and 5 decreases the

number of iterations to only 5. However, one needs to note that by increasing the sub-

space size, we also increase memory and computational costs per iteration (the two last

columns in Table 7.3). In terms of matrix-vector multiplications, the most efficient is

m=3 for PYPa-Wp system, since it converges the solution as fast as m=5 (5 iterations),
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but each iteration is cheaper. We also see a somewhat similar behavior for (mU)2-

(H2O)2 system - m = 1 is clearly a poor choice that is unable to converge the solution

in 60 iterations. The increase of the subspace size significantly decreases the number of

iterations needed for convergence, the most efficient, in terms of matrix-vector multipli-

cations, for this system is one with m=5. In Figure 7.2 we plot the norm of the residuals

of the 1st and 3rd root at each iteration for different parameter m of the GPLMR and for

Davidson for the two systems. We see that, in general, GPLMR gives much smoother

convergence than Davidson, for example, even for a quite small subspace size (m=2)

the requested roots for PYPa-Wp are converging faster and more monotonically than

with Davidson. As was noted before, increasing the size of the subspace significantly

improves the convergence, but at the price of the increased computational cost of each

iteration.

Figure 7.2: Norm of the residual for the 1st and 3rd root for the GPLMR and
Davidson solvers at each iteration. Left: PYPa-Wp/6-31+G(d,p), right: (mU)2-
(H2O)2/6-311+G(d,p).

Lastly, in Table 7.4 we show how the Davidson procedure with the user-defined

guess converges the roots of a specified transition character. We see that in most cases

modified Davidson’s method successfully converges the solution to the root dominated

by the transition from the orbital chosen by the user. In all cases, the contribution of the
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chosen orbital to the EOM wave function (r1 coefficient) is higher than 0.88. We also

note that the problematic convergence (e.g. transition from 30th orbital in PYPa-Wp)

corresponds to the case when another orbital has considerable contributions to the wave

function (larger than 0.1).

7.5 Conclusions

Two new modifications of the canonical Davidson method are presented - the first one

enables finding the multiple roots around a specified energy shift (Davidson with shift);

another one allows one to solve for a single root dominated by the user-specified transi-

tion (Davidson with user-defined guess). This new functionality will allow calculating

the roots lying high in energy that would be inaccessible by the standard method that is

designed to find only few lowest in energy transitions. For example, if an experimental

or theoretical estimation of the energy of transition is available one can use Davidson

with energy shift to calculate the transitions around the chosen energy. As another exam-

ple, if one is interested in finding the root dominated by a particular transition (e.g., core

ionization of the 1s carbon orbital), the Davidson with the user-defined guess can be

used. We also present an implementation of an entirely new solver for non-Hermitian

interior eigenvalue problems - Generalized Preconditioned Locally Minimal Residual

Method (GPLMR)17, which also has capabilities of finding the roots closest to the cho-

sen energy shift. The subspace size of the GPLMR solver can be controlled by the user

by choosing the number of Krylov-space residuals generated for each unconverged root.

Bigger subspace sizes will provide better convergence (fewer number of iterations), but

requires more memory and matrix-vector multiplications per iteration. All aforecited

methods are implemented for the EOM families of methods (EA,EE, and IP) in the

Q-Chem20 electronic structure package.
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New solvers are tested for EOM-IP for two biological systems and, in most cases,

successfully find the roots targeted by the user. We observe that, in general, GPLMR

with zero shift converges much faster in terms of total number of iteration than conven-

tional Davidson. However, the cost of each iteration of GPLMR is significantly higher

than that of Davidson’s method, thus the overall number of time determining opera-

tions (matrix-vector multiplications) is significantly higher for GPLMR. However for

the cases of finding interior eigenvalues around the chosen energy shift, GPLMR shows

better and more robust convergence than modified Davidson’s method with shift which

sometimes fails to find the requested solution. Thus, the use of GPLMR can be advised

for the problematic cases when Davidson’s method with shift is unable to converge.
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Chapter 8: Future work

The research presented in this thesis opens numerous ways for further method devel-

opment and chemical applications. The combination of complex absorbing potentials

with EOM family of methods presented in Chapter 5 is a powerful ab initio tool for the

theoretical description of autoionizing resonances. In Chapter 5 application of CAP-

EOM-EA to shape resonances in mid-size molecules is described. Besides EOM-EA,

resonances resulting from electron excitation would be also interesting to study using

CAP-EOM-EE implemented in Q-Chem. The possible candidates for this study could

be closed-shell molecular anions such as model chromophores of photoactive yellow and

green fluorescent proteins that are described in Chapters 2 and 3. Another interesting

systems to study with CAP-augmented EOM methods are resonance states in dianions.

For this goal EOM-DEA method1 needs to be implemented and combined with CAP. In

this new CAP-EOM-DEA method one will start with a closed-shell reference state and

by attaching two electrons arrive at doubly attached dianion resonance. The possible

candidates for this study could be resonances in C2−
2 , CN2−

2 , CO2−
3

2, 3.

Regarding the technical aspects of the implementation of CAP-EOM methods there

are also few possible ways for improvement. In current implementation each point for

different CAP strength ηi is calculated independently using guess for HF, CCSD, and

EOM of an unmodified Hamiltonian. Alternatively, we can use information obtained

for previous CAP strength ηi−1 (molecular orbitals, T amplitudes, left and right EOM
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vectors) as guesses for HF, CCSD, and EOM calculation with new strength parameter ηi.

I anticipate that it would significantly accelerate the calculation of η-trajectories, since

we usually vary strength parameter by small increment ∆η that results in small changes

in the solutions. This improvement will provide better and more robust convergence of

the solution at all levels of theory. It will also provide a more user-friendly way of setting

up calculations in which only step, starting and ending points of η-trajectory need to be

specified in a single input. Ideally the CAP-EOM methods should be made ”truly” ab

initio by reducing the number of parameters (such as ”box” size and CAP strength)

needed from the user. The box size can be automatically set up by performing CCSD

calculation of ground state properties for zero strength and choosing length of the box as
√

< X2 >,
√

< Y 2 >m and
√

< Z2 >. The step (∆η) in calculation of η-trajectories can

be chosen using some numerical schemes (for example Newton’s optimization method)

for finding the extremum of corrected real and imaginary parts of energies.

It would be also beneficial to extend the functionality of complex Davidson’s pro-

cedure for finding highly lying state specified by the shift or user guess as described

for the real case in Chapter 7. Since many resonance states (e.g., Feshbach resonance

in helium) are lying high in energy this feature will allow one to find the solution for

this particular states, without calculating many roots lying below the resonance state or

performing full diagonalization.

Cholesky decomposition of two electron integrals presented in Chapter 6 opens the

way to calculate much larger systems while controlling the accuracy of the approxima-

tion. Since the data size is significantly reduced, it enables not only memory savings, but

also allows one to achieve much more efficient parallelization due to reduced I/O over-

heads. This can be exploited on supercomputers or graphical processing units (GPU)4, 5

where the time to transfer large amount of data very often surpasses actual calculation
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time. However, one need to mention that even though Cholesky decomposition reduces

the storage of integrals and its intermediates significantly, the formal memory scaling

is still O(N4) (but with much reduced prefactor) due to necessity to store t2 amplitudes

in CCSD calculations and r2 in EOM. The equations cannot be simplified to remove

all O(N6) types of contractions, thus there is no reduction in computational scaling.

In order to address these problems, reduced-rank approximation representation of t2

and r2 amplitudes can be applied. By reducing the rank of the wave function parame-

ters one can not only reduce memory scaling (by removing all O(N4) terms left), but

also possibly reduce computational scaling by simplifying the contractions to the oper-

ations with lower order tensors. The reduction in computational scaling of CCSD and

EOM (O(N6)) would broaden the area of applicability of this methods to significantly

larger systems. Among one of the most promising techniques is a tensor hypercontrac-

tion (THC) approach6, 7 in which tensor is decomposed using physical spatial grid. For

CCSD it has been already shown that using both two-electron integrals and t amplitudes

in THC decomposed format and by rewriting the equations one can reduce the compu-

tational scaling to O(N4)7. However, the choice of the decomposition grid and ability

to control the numerical errors for decomposed tensors remain open questions for THC

method.

Another way of speeding up calculations and reducing memory of post Hartree-Fock

calculations is to use the fact that for large systems all the tensors become extremely

sparse. The Cholesky decomposed two-electron integrals inherit sparsity of the original

ERI tensor in which the number of significant non-zero elements grows as O(N2). In

Figure 8.1 the number of elements below the chosen threshold in each Cholesky vector

Lµν is presented for cluster of 15 water molecules in 6-31+G(d,p) basis set. We can

see that even for a conservative threshold of 10−9 there is only half of significantly large
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Figure 8.1: The number of zero elements (smaller in absolute value than 10−9, 10−7

and 10−5 thresholds) in each Cholesky vector for the cluster of 15 water molecules
in the 6-31+G(d,p) basis set. The ERI is decomposed in AO basis with Cholesky
threshold 10−3.

elements, whereas for 10−5 more than 80% are negligible. By adopting efficient integral

screening procedures such as Shwartz8, 9 and QQR10 integral estimates, one can avoid

calculation and storage of blocks with nearly zero elements. These schemes have been

successfully applied for calculation of AO-MP2 energy11 of systems with more than

10000 Gaussian basis functions. Similar ideas can be also applied to exploiting sparsity

of wave function coefficients (such as t2 and r2 amplitudes).

It is also worth mentioning that CAP-EOM methods can be enhanced by using

Cholesky decomposition as well as other low-rank techniques. The reduction in mem-

ory for CAP calculations will be more crucial because of larger basis sets needed for

calculations and since complex algebra requires twice the data to store comparing to

conventional methods. Thus, implementation of CD-CAP-EOM methods will be essen-

tial for studying the resonance in large molecules (for example in biochromophores).
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E. V. Gromov, I. Burghardt, H. Köppel, and L. S. Cederbaum. J. Am. Chem. Soc.,
129:6798–6806, 2007.

F. Grossmann. Chem. Phys. Lett., 262:470–476, 1996.

P.C. Hariharan and J.A. Pople. Theor. Chim. Acta, 28:213, 1973.
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O. Vahtras, J. Almlöf, and M.W. Feyereisen. Chem. Phys. Lett., 213:514, 1993.

M.A. van der Horst, J.C. Arents, R. Kort, and K.J. Hellingwerf. Photochem. and
Photobiol. Sci., 6:571–579, 2007.

E. H. van Veen and F. L. Plantenga. Chem. Phys. Lett., 38(3):493 – 497,
1976. URL http://www.sciencedirect.com/science/article/
pii/0009261476800243.

L. J. G. W. van Wilderen, M. A. van der Horst, I. H. M. van Stokkum, K. J. Hellingw-
erf, R. van Grondelle, and M. L. Groot. Proc. Nat. Acad. Sci., 103(41):15050–15055,
2006.

286



E. Vecharynski, F. Xue, and C. Yang. E. Vecharynski, F. Xue, and C. Yang. private
communication, 2013.

E. H. Van Veen, W. L. Van Dijk, and H. H. Brongersma. Chem. Phys., 16:337–345,
1976.

M. Vengris, I.H.M. van Stokkum, X. He, A.F. Bell, P. Tonge, R. van Grondelle, and
D.S. Larsen. J. Phys. Chem. A, 108:4587–4598, 2004.

A. Venkatnathan and M. K. Mishra. Chem. Phys. Lett., 296:223 – 232, 1998.

A. Venkatnathan, M.K. Mishra, and H.J. Aa. Jensen. Theor. Chim. Acta, 104:445–
454, 2000.

M. Vinodkumar, H. Bhutadia, B. Antony, and N. Mason. Phys. Rev. A, 84, 2011.

L. Vogt, R. Olivares-Amaya, S. Kermes, Y. Shao, C. Amador-Bedolla, and
A. Aspuru-Guzik. J. Phys. Chem. A, 112:2049–2057, 2008.

V. P. Vysotskiy and L. S. Cederbaum. J. Chem. Phys., 132:044110, 2010.

I. C. Walker, A. Stamatovic, and S. F. Wong. J. Chem. Phys., 69:5532, 1978.

Y. Wang, J.Y.-J. Shyy, and S. Chien. Ann. Rev. Biomed. Eng., 10:1–38, 2008.

R. Wehlitz, D. Lukic, and B. Bluett. Phys. Rev. A, 68:052708, 2003.

F. Weigend. Phys. Chem. Chem. Phys., 8:1057–1065, 2006.

F. Weigend. J. Comput. Chem., 29:167–175, 2008.
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